Histone deacetylases inhibitor and RAD51 recombinase increase transcription activator-like effector nucleases-mediated homologous recombination on the bovine β-casein gene locus |
Park, Da Som
(Department of Animal Science, Chonnam National University)
Kim, Se Eun (Department of Animal Science, Chonnam National University) Koo, Deog-Bon (Department of Biotechnology, College of Engineering, Daegu University) Kang, Man-Jong (Department of Animal Science, Chonnam National University) |
1 | Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013;31:397-405. https://doi.org/10.1016/j.tibtech.2013.04.004 DOI |
2 | Sakuma T, Woltjen K. Nuclease-mediated genome editing: At the front-line of functional genomics technology. Dev Growth Differ 2014;56:2-13. https://doi.org/10.1111/dgd.12111 DOI |
3 | Tan W, Proudfoot C, Lillico SG, Whitelaw CBA. Gene targeting, genome editing: from Dolly to editors. Transgenic Res 2016;25:273-87. https://doi.org/10.1007/s11248-016-9932-x DOI |
4 | Park TS. Current strategies of genomic modification in livestock and applications in poultry. J Anim Reprod Biotechnol 2019;34:65-9. https://doi.org/10.12750/JARB.34.2.65. DOI |
5 | Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol 2005;23:967-73. https://doi.org/10.1038/nbt1125 DOI |
6 | Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. J Genet Genomics 2013;40:281-9. https://doi.org/10.1016/j.jgg.2013.03.013 DOI |
7 | Liu X, Wang Y, Guo W, et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the -casein locus in cloned cows. Nat Commun 2013;4:2565. https://doi.org/10.1038/ncomms3565 DOI |
8 | Liu X, Wang Y, Tian Y, et al. Generation of mastitis resistance in cows by targeting human lysozyme gene to -casein locus using zinc-finger nucleases. Proc Biol Sci 2014;281:20133368. https://doi.org/10.1098/rspb.2013.3368 |
9 | Jeong YH, Kim YJ, Kim EY, et al. Knock-in fibroblasts and transgenic blastocysts for expression of human FGF2 in the bovine -casein gene locus using CRISPR/Cas9 nuclease-mediated homologous recombination. Zygote 2016;24:442-56. https://doi.org/10.1017/S0967199415000374 DOI |
10 | Yuan YG, Song SZ, Zhu MM, et al. Human lactoferrin efficiently targeted into caprine beta-lactoglobulin locus with transcription activator-like effector nucleases. Asian-Australas J Anim Sci 2017;30:1175-82. https://doi.org/10.5713/ajas.16.0697 DOI |
11 | Lin S, Staahl BT, Alla RK, Doudna JA. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 2014;3:e04766. https://doi.org/10.7554/eLife.04766 DOI |
12 | Chu VT, Weber T, Wefers B, et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 2015;33:543-8. https://doi.org/10.1038/nbt.3198 DOI |
13 | Song J, Yang D, Xu J, Zhu T, Chen YE, Zhang J. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun 2016;7:10548. https://doi.org/10.1038/ncomms10548 DOI |
14 | Mao Z, Bozzella M, Seluanov A, Gorbunova V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 2008;7:2902-6. https://doi.org/10.4161/cc.7.18.6679 DOI |
15 | Dae RM, Cutts JP, Brafman DA, Haynes KA. The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synth Biol 2017;6:428-38. https://doi.org/10.1021/acssynbio.5b00299 DOI |
16 | Takayama K, Igai K, Hagihara Y, et al. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucleic Acids Res 2017;45:5198-207. https://doi.org/10.1093/nar/gkx130 DOI |
17 | Kim SE, Park DS, Koo D-B, Kang M-J. Knock-in efficiency depending on homologous arm structure on the knock-in vector in bovine fibroblasts. Reprod Dev Biol 2017;41:7-16. https://doi.org/10.12749/RDB.2017.41.1.7 DOI |
18 | Hockemeyer D, Wang H, Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 2011;29:731-4. https://doi.org/10.1038/nbt.1927 DOI |
19 | Hisano Y, Sakuma T, Nakade S, et al. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 2015;5:8841. https://doi.org/10.1038/srep08841 DOI |
20 | Yoshimi K, Kunihiro Y, Kaneko T, Nagahora H, Voigt B, Mashimo T. ssODN-mediated knock-in with CRISPR-Cas for large genomic regions in zygotes. Nat Commun 2016;7:10431. https://doi.org/10.1038/ncomms10431 DOI |
21 | Zhang JP, Li XL, Li GH, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. Genome Biol 2017;18:35. https://doi.org/10.1186/s13059-017-1164-8 DOI |
22 | Howden SE, Maufort JP, Duffin BM, Elefanty AG, Stanley EG, Thomson JA. Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Rep 2015;5:1109-18. https://doi.org/10.1016/j.stemcr.2015.10.009 DOI |
23 | Verkuijl SAN, Rots MG. The influence of eukaryotic chromatin state on CRISPR-Cas9 editing efficiencies. Curr Opin Biotechnol 2019;55:68-73. https://doi.org/10.1016/j.copbio.2018.07.005 DOI |
24 | Thomas KR, Deng C, Capecchi MR. High-fidelity gene targeting in embryonic stem cells by using sequence replacement vectors. Mol Cell Biol 1992;12:2919-23. https://doi.org/10.1128/MCB.12.7.2919 DOI |
25 | Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc finger nucleases. Nature 2005;435:646-51. https://doi.org/10.1038/nature03556 DOI |
26 | Byrne SM, Ortiz L, Mali P, Aach J, Church GM. Multi-kilo base homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 2015;43:e21. https://doi.org/10.1093/nar/gku1246 DOI |
27 | Maruyama T, Dougan SK, Truttmann MC, Bilate AM, Ingram JR, Ploegh HL. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of non homologous end joining. Nat Biotechnol 2015;33:538-42. https://doi.org/10.1038/nbt.3190 DOI |
28 | Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep 2017;7:42661. https://doi.org/10.1038/srep42661 DOI |