• Title/Summary/Keyword: Transcript

Search Result 678, Processing Time 0.026 seconds

Isolation and Characterization of UV-inducible gene in Eukaryotic cells

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.52-56
    • /
    • 2001
  • The present study intends to characterize the DNA damage-inducible responses in eukaryotic cells. The fission yeast, S. pombe, which displays efficient DNA repair systems, was used in this study as a model system for higher eukaryotes. To study UV-inducible responses in S. pombe, five UV-inducible cDNA clones were isolated from S. pombe by using subtration hybridization method. To investigate the expression of isolated genes, the cellular levels of the transcripts of these genes were determined by Northern blot analysis after UV-irradiation. The transcripts of isolated gene (UV130) increased rapidly and reached maximum accumulation after UV-irradiation. Compared to the message levels of control, the levels of maximal increase were approximately 5 fold to UV-irradiation. In order to investigation whether the increase of UV130 transcripts was a specific results of UV-irradiation, UV130 transcript levels were examined after treating the cells to Methylmethane sulfonate (MMS). The transcripts of UV130 were not induced by treatment of 0.25% MMS. These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of these genes. To characterize the structure of UV130 gene, nucleotide sequences were analyzed. The nucleotide sequence of 1,340 nucleotide excluding poly(A) tail contains one open reading frame, which encodes a protein of 270 amino acids. The predicted amino acid sequences of UV130 do not exhibit any significant similarity to ther known sequences in the database.

  • PDF

Symmetry Region at Beginning of Transcript Inhibits Expression of Escherichia coli aeg-46.5 Operon

  • Lee, Seung-Hwa;Lee, Sang-Ho;Sung, Ha-Chin;Kim, Joon;Choe, Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.4
    • /
    • pp.436-442
    • /
    • 1999
  • The aeg-46.5 operon of Escherichia coli is induced by nitrate and anaerobic conditions. Positive regulators Fnr and NarP, and a negative regulator NarL control the expression of the aeg-46.5. It has two symmetry regions [6], one of which is located between +37 and +56 bp from the 5'end of the anaerobic transcription initiation site. In this study, mutagenized symmetry regions were transferred from plasmid to chromosome by homologous recombination to evaluate the mutation as a single copy in the fnr, narL, narP, and narL-narP double mutant background. The expressions of the aeg-46.5 operon with these mutations indicated that the control was not through the possible stem-loop structure. Whether there is a protein that mediates this control remains to be seen. The results from the narL-narP double mutant indicated that the anaerobic Fill induction was independent of NarL repression.

  • PDF

Effects of Kamichihyo-san on Anti-CD40 and Recombinant Interleukin-4 Induced Cytokine Production and Immunoglobulin E in Highly Purified Mouse B Cells (생쥐의 B 세포에서 anti-CD40과 rIL-4로 유도된 사이토카인 생산과 면역글로블린 E에 대한 가미치효산의 효과)

  • Ham Chul in;Park Yang chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1479-1486
    • /
    • 2003
  • In order to evaluate the antiallergic effects of Kamiohihyosan(KCHS), studies were done. We measured the cytotoxic activity for lung fibroblast cell, cytokines transcript expression, production of IL-4, IL-10, IFN-γ, proliferation of B cell in anti-CD40mAb plus rIL-4 stimulated murine splenic B cells. The results were obtained as follows: KCHS was not showed cytotoxicity in the fibroblast lung cell, KCHS increased the gene synthesis of INF-γ, TNF-α, IL1-β, IL-6, IL-10(m-RNA), KCHS decreased the gene synthesis of IL-4, IL-5, TGF-β(m-RNA), KCHS decreased the appearance of IL-4, IgE significantly, KCHS increased the appearance of IL-10, IFN-γ significantly, KCHS decreased the proliferation of B cell significantly, The facts above prove that KCHS is effective against the allergy. Thus, I think that we should study on this continuously.

Introduction of Hog Cholera Virus Gene into Potato Plants by Agrobacterium-mediated Transformation and the Analysis of Its Expression

  • Kim, Hyun-Soon;Jeon, Jae-Heung;Kim, Cheol-Jung;Hyouk Joung
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.155-161
    • /
    • 2002
  • The HCV gene was expressed in potato plants under the control of the constitutive CaMV 355 promoter or tuber-specific patatin promoter. Solanum tuberosum plants carrying a plant expression vector harboring the encoding region of HCV gene were generated by Agrobacterium tumefaciens-mediated in vitro transformation methods. The presence of HCV gene in the plant genome was detected by PCR and DNA hybridization experiments. We obtained the 5 lines of transgenic potato with the pMBPHCV construct and 4 lines of transgenic potato with the pATHCV construct. The HCV transgenic stably integrated into the potato genome, as well as their transcription. HCV mRNA was identified in leaf and tuber tissues of transgenic plants by Northern blot analysis. The transgenic potato plants produced the expected transcript, and the corresponding HCV protein accumulated in individual transgenic plants.

Characterization of Lupinus Iuteus Chloroplgsl Gene Coding for Components of a Chloroplastic NADH Dehydrogenase

  • Oczkowski, Marian;Augustyniak, Halina
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.73-78
    • /
    • 2000
  • The plastid genomes of several plants contain ndh genes homologues of genes encoding subunits of the mitochondrial complex I. We sequenced the part of lupin ndhB, ndhD and ndhF genes in order to compare the structure of these genes with those of Nicotiana tabaum, Arabidopsis thaliana, Zea mays and Oryza sativa with the idea to detect the presence of stretches with identical aminoacid composition. We were only able to find one or two stretches of this kind of about 16 aminoacid- long in the analyzed fragments of the ndh genes. The total number of such stretches was different in particular gene products: for ndhc 1, ndhB 9, ndhD 3 and ndhF 6. We have also examined the transcription pattern of ndhC, ndhK and ndhJ genes during lupin development. We show that the greatest amount of ndhC, ndhK and ndhJ transcripts are observed in 7- to 14 day- old lupin seedlings. We also studied the level of transcription of those genes in plants growing at low temperature. All the data confirmed that the abundance of transcription of ndhC, ndhK, and ndhJ genes increased under chill conditions. It has to be noted that the level of transcription of the ndhC gene was higher than the other genes probably due to higher stability of this transcript.

  • PDF

Gene silencing assessment for genes from recalcitrant or poorly studied plant species

  • Kamoi, Takahiro;Eady, Colin Charles;Imai, Shinsuke
    • Plant Biotechnology Reports
    • /
    • v.2 no.3
    • /
    • pp.199-206
    • /
    • 2008
  • We have developed an efficient system of assessing the ability of a gene silencing cassette to silence transcripts from recalcitrant or poorly studied plant species by using a model plant as a host for the gene of interest. Tobacco plants transgenic for Lachrymatory Factor Synthase (LFS) enzyme activity from onion were first produced by introducing a CaMV 35S-onion-lfs gene construct. These plants were then subjected to a second transformation with an RNAi construct directed against the lfs gene sequence. LFS enzyme activity assay showed that the transgenic plants, containing both the lfs gene and the RNAi construct, had significantly reduced LFS activity. This observation was supported by Western analysis for the LFS protein and further validated by quantitative RT-PCR analysis that demonstrated a significant reduction in the lfs transcript level in the dual transformants. In this work, we have demonstrated that the RNAi construct is a suitable candidate for the development of a non-lachrymatory onion. Our model plant RNAi system has wide-reaching applications for assessment and targeting of plant secondary pathway genes, from poorly studied or recalcitrant plant species, that are important in the pharmacological, food and process industries.

Construction and Validation of Human cDNA Microarray for Estimation of Endocrine Disrupting Chemicals (KISTCHIP-400 ver. 1.0)

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.52-61
    • /
    • 2005
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an awareness of endocrine disrupting chemicals (EDCs) and their potential screening methods to identify endocrine activity have been increased. Here we developed an in-house cDNA microarray, named KISTCHIP-400 ver. 1.0, with 416 clones, based on public database and research papers. These clones contained estrogen, androgen, thyroid hormone & receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. Also, to validate the KISTCHIP-400 ver. 1.0, we investigated gene expression profiles with reference hormones, $10^{8}\;M\;17{\beta}-estradiol,\;10^{-7}\;M\;testosterone\;and\;10^{-7}\;M$ progesterone in MCF-7 cell line. As the results, gene expression profiles of three reference hormones were distinguished from each other with significant and identified 33 $17{\beta}-estradiol$ responsive genes. This study is in first step of validation for KISTCHIP-400 ver. 1.0, as following step transcriptional profile analysis on not only low concentrations of EDCs but suspected EDCs using KISTCHIP-400 ver. 1.0 is processing. Our results indicate that the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

Rho-dependent Transcription Termination: More Questions than Answers

  • Banerjee Sharmistha;Chalissery Jisha;Bandey Irfan;Sen Ranjan
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.11-22
    • /
    • 2006
  • Escherichia coli protein Rho is required for the factor-dependent transcription termination by an RNA polymerase and is essential for the viability of the cell. It is a homohexameric protein that recognizes and binds preferably to C-rich sites in the transcribed RNA. Once bound to RNA, it utilizes RNA-dependent ATPase activity and subsequently ATPase-dependent helicase activity to unwind RNA-DNA hybrids and release RNA from a transcribing elongation complex. Studies over the past few decades have highlighted Rho as a molecule and have revealed much of its mechanistic properties. The recently solved crystal structure could explain many of its physiological functions in terms of its structure. Despite all these efforts, many of the fundamental questions pertaining to Rho recognition sites, differential ATPase activity in response to different RNAs, translocation of Rho along the nascent transcript, interactions with elongation complex and finally unwinding and release of RNA remain obscure. In the present review we have attempted to summarize 'the knowns' and 'the unknowns' of the Rho protein revealed by the recent developments in this field. An attempt has also been made to understand the physiology of Rho in the light of its phylogeny.

Continuous Synthesis of Escherichia coli GroEL at a high Temperature

  • Kwak, Young-Hak;Lee, Kyong-Sun;Kim, Ji-Yeon;Lee, Dong-Seok;Kim, Han-Bok
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.145-149
    • /
    • 2000
  • GroEL is a typical molecular chaperone. GroEL synthesis patterns at various culture temperatures in Escherichia coli were investigated in this study. No significant differences in the amount of GroEL produced from the chromosome were found at 30 and 37$^{\circ}C$. However, GroEL production increased 3.4-fold at 42$^{\circ}C$. GroEL synthesis was not transient but continuous at 42$^{\circ}C$, although most heat shock gene expression is known to be transient. To understand the role of the groEL structural gene, a groE promoter-lacZ fusion was constructed. Interestingly , while transcriptional fusion is not thermally inducible, it is inducible by ethanol, suggesting that the secondary structure of the groEL transcript is involved in thermal regulation of the groEL gene. Secondary structures of groE mRNA at 37 and 42$^{\circ}C$ were compared using the computer program RNAdraw. Distinct structures at the two temperatures were found, and these structures may be related to a high level of GroEL expression at 42$^{\circ}C$.

  • PDF

cDNA Cloning and Overexpression of an Isoperoxidase Gene from Korean-Radish, Raphanus sativus L.

  • Park, Jong-Hoon;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.137-141
    • /
    • 1996
  • A partial cDNA encoding a Korean radish isoperoxidase was obtained from a cDNA library prepared from 9 day old radish root. In order to obtain Korean radish isoperoxidase cDNA, 5' RACE (rapid amplification cDNA end) PCR was performed and a cDNA (prxK1) encoding a complete structural protein was obtained by RT (reverse transcription)-PCR. Sequence analysis revealed that the length of the cDNA was 945 base pairs, and that of the mRNA transcript was ca. 1.6 kb. The deduced amino acid of the protein were composed of 315 amino acid residues and the protein was 92% homologous to turnip peroxidase, and 46% to 50% homologous to other known peroxidases. The 945 bp cDNA encoding Korean radish isoperoxidase was overexpressed in Escherichia coli up to approximately 9% of total cellular protein. The recombinant fusion protein exhibited 43 kDa on SDS-PAGE analysis and the activity level of the recombinant nonglycosylated protein was two fold higher in IPTG induced cell extracts than that of uninduced ones.

  • PDF