• Title/Summary/Keyword: Transceiver module

Search Result 133, Processing Time 0.028 seconds

A Design of Transceiver Module for Wire and Wireless Robust Security System (로버스트 유무선 보안시스템을 위한 송수신 모듈의 설계)

  • Park, Sung Geoul;Lee, Jae Min
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.173-180
    • /
    • 2016
  • In this paper, a design of transceiver module for real-time wire and wireless robust integrated security system to solve the problem of conventional security system and its transceiver module is proposed. The presented robust integrated security system is designed with RF control unit and wireless transceiver module. A RF controller in transceiver module works as a low-power RF transceiver system. It is designed to use specific bandwidth stored in registers and manipulate RF power of transceiver by accessing the random values of registers. Operation algorithm for RF transceiver module is also presented. The designed transceiver module and the operation algorithm are implemented and verified by experiments.

A Triple-Band Transceiver Module for 2.3/2.5/3.5 GHz Mobile WiMAX Applications

  • Jang, Yeon-Su;Kang, Sung-Chan;Kim, Young-Eil;Lee, Jong-Ryul;Yi, Jae-Hoon;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • A triple-band transceiver module for 2.3/2.5/3.5 GHz mobile WiMAX, IEEE 802.16e, applications is introduced. The suggested transceiver module consists of RFIC, reconfigurable/multi-resonance MIMO antenna, embedded PCB, mobile WiMAX base band, memory and channel selection front-end module. The RFIC is fabricated in $0.13{\mu}m$ RF CMOS process and has 3.5 dB noise figure(NF) of receiver and 1 dBm maximum power of transmitter with 68-pin QFN package, $8{\times}8\;mm^2$ area. The area reduction of transceiver module is achieved by using embedded PCB which decreases area by 9% of the area of transceiver module with normal PCB. The developed triple-band mobile WiMAX transceiver module is tested by performing radio conformance test(RCT) and measuring carrier to interference plus noise ratio (CINR) and received signal strength indication (RSSI) in each 2.3/2.5/3.5 GHz frequency.

Integrated Transceiver Module development at Ka-Band (Ka-Band의 집적화된 송수신 모듈 개발)

  • Kim, Wan-Sik;Jung, Yun-Man;Kim, Gye-Kuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.267-272
    • /
    • 2006
  • In this paper, an integrated and small Ka-band transceiver module has been developed for measuring distance at the radar systems. Oscillator of cavity type, The MMIC such as VCO, power amplifier, LNA, and mixer, and passive components are integrated on carriers and these are assembled in the transceiver module directly. The test result shows the output power of 21dBm and the noise figure of 5dB using developed transceiver module. Using developed FMCW transceiver module. We can measure the 60m range target by detecting the beat frequency and distinguish both earth and sky using radiometer signal. So we defined that the integrated module using MMIC had a good performance for the radar and radiometer at Ka-band.

  • PDF

Implementation of an LFM-FSK Transceiver for Automotive Radar

  • Yoo, HyunGi;Park, MyoungYeol;Kim, YoungSu;Ahn, SangChul;Bien, Franklin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.258-264
    • /
    • 2015
  • The first 77 GHz transceiver that applies a heterodyne structure-based linear frequency modulation-frequency shift keying (LFM-FSK) front-end module (FEM) is presented. An LFM-FSK waveform generator is proposed for the transceiver design to avoid ghost target detection in a multi-target environment. This FEM consists of three parts: a frequency synthesizer, a 77 GHz up/down converter, and a baseband block. The purpose of the FEM is to make an appropriate beat frequency, which will be the key to solving problems in the digital signal processor (DSP). This paper mainly focuses on the most challenging tasks, including generating and conveying the correct transmission waveform in the 77 GHz frequency band to the DSP. A synthesizer test confirmed that the developed module for the signal generator of the LFM-FSK can produce an adequate transmission signal. Additionally, a loop back test confirmed that the output frequency of this module works well. This development will contribute to future progress in integrating a radar module for multi-target detection. By using the LFM-FSK waveform method, this radar transceiver is expected to provide multi-target detection, in contrast to the existing method.

A Compact Integrated RF Transceiver Module for 2.4 GHz Band Using LTCC Technology (LTCC 기술을 적용한 집적화된 2.4 GHz 대역 무선 송수신 모듈 구현)

  • Kim, Dong-Ho;Kim, Dong-Su;Ryu, Jong-In;Kim, Jun-Chul;Park, Chong-Dae;Park, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • This paper presents a compact integrated transceiver module for 2.4 GHz band applications using Low Temperature Co-fired Ceramic(LTCC) technology. The implemented transceiver module is divided into an RF Front-End Module (FEM) part and a transceiver IC chip part. The RF FEM part except an SPDT switch and DC block capacitors is fully embedded in the LTCC substrate. The fabricated RF FEM has 8 pattern layers and it occupies less than $3.3\;mm{\times}5.2\;mm{\times}0.4\;mm$. The measured results of the implemented RF FEM are in good agreement with the simulated results. The transceiver IC chip part consists of signal line, power line and transceiver IC for 2.4 GHz band communication system. The fabricated transceiver module has 9 layers including three inner grounds and it occupies less than $12\;mm{\times}8.0\;mm{\times}1.1\;mm$. The implemented transceiver module provides an output power of 18.1 dBm and a sensitivity of -85 dBm.

A Study on Analysis of Disturbance in VLC Transceiver Module Based on LED Communication (LED 조명통신용 드라이빙기술 기반 VLC 송수신기 모듈의 외란광 분석에 관한 연구)

  • Hong, Geun-Bin;Jang, Tae-Su;Kim, Tae-Hyung;Kim, Yong-Kab
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1391-1395
    • /
    • 2011
  • In this paper, would implement a transceiver for the visible light communication that based on wireless communication driving technology for LED illumination-based infrared ray communication, and measurement analyzed a design error rate of a transceiver variable rate has made about distance change -2.5m. The error rate measured a voltage variable along illuminate change between switchable circumstances, which has illuminated insight and outright. Each analyzed and measurement on the communication distance errors along the differences of disturbance light between night and days. The LED module has implemented for number of 6 through illumination dimming in case of different values. Also, implementation for the system module of a VLC transceiver based on the infrared sensors which used feedback outcome value has analyzed with error rate.

Design and Implementation of Wireless Transceiver Module for Parking Control System (주차관제를 위한 무선 송수신 모듈 설계 및 구현)

  • Cho, Byung-Hak
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.24-29
    • /
    • 2009
  • In this paper, we show the implementation of the low-cost RF transceiver module for parking control system. Super regenerative receiver scheme was adopted for this module due to its simplicity, low-cost, low power consumption and small number of components to improve reliability of the systems. For improving communication error rate by collision and in-band noise, dual-channel hopping scheme was adopted. Testing prototypes under the environment of simultaneous transmissions, we verified that the designed scheme is able to improve the success rate of data transmission of wireless parking control system cost effectively.

  • PDF

Development of W-band Transceiver Module using Manufactured MMIC (국내개발 MMIC칩을 적용한 W-Band 송수신모듈 개발)

  • Kim, Wan-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.233-237
    • /
    • 2017
  • The dual-channel receiver MMIC which is composed of LNA, Mixer, LO-amp and temperature compensation circuit is designed on a single chip. For the performance comparison, a FMCW radar transceiver module using commercial MMICs is also implemented. As a result, Multi-channel Transceiver using manufactured MMIC shows an improved performance such as noise figure and gain flatness compare to purchased MMIC.

A 77GHz MMIC Transceiver Module for Automotive Forward-Looking Radar Sensor

  • Kang, Dong-Min;Hong, Ju-Yeon;Shim, Jae-Yeob;Yoon, Hyung-Sup;Lee, Kyung-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.609-610
    • /
    • 2006
  • A 77GHz MMIC transceiver module consisting of a power amplifier, a low noise amplifier, a drive amplifier, a frequency doubler and a down-mixer has been developed for automotive forward-looking radar sensor. The MMIC chip set was fabricated using $0.15{\mu}m$ gate-length InGaAs/InAlAs/GaAs mHEMT process based on 4-inch substrate. The power amplifier demonstrated a measured small signal gain of over 20dB from $76{\sim}77GHz$ with 15.5dBm output power. The chip size is $2mm{\times}2mm$. The low noise amplifier achieved a gain of 20dB in a band between $76{\sim}77\;GHz$ with an output power of 10dBm. The chip size is $2.2mm{\times}2mm$. The driver amplifier exhibited a gain of 23dB over a $76{\sim}77\;GHz$ band with an output power of 13dBm. The chip size is $2.1mm{\times}2mm$. The frequency doubler achieved an output power of -16dBm at 76.5GHz with a conversion gain of -16dB for an input power of 10dBm and a 38.25GHz input frequency. The chip size is $1.2mm{\times}1.2mm$. The down-mixer demonstrated a measured conversion gain of over -9dB. The chip size is $1.3mm{\times}1.9mm$. The transceiver module achieved an output power of 10dBm in a band between $76{\sim}77GHz$ with a receiver P1dB of -28dBm. The module size is $8{\times}9.5{\times}2.4mm^3$. This MMIC transceiver module is suitable for the 77GHz automotive radar systems and related applications in W-band.

  • PDF

Transceiver Module for W-band Compact Radar (W-band 초소형 레이다용 송수신모듈)

  • Kim, Young-Gon;An, Se-Hwan;Park, Chang-Hyun;Kwon, Jun-Beom;Song, Sun-Ki;Yong, Myung-Hun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.27-32
    • /
    • 2018
  • In this paper, W-band transceiver module for compact radar has been designed and fabricated. Utilizing proposed microstrip-to-waveguide transition, the error between design and implementation is reduced. The proposed transition provides less than 1 dB insertion loss per transition and reliability for fabrication. In order to apply compact radar with dual-polarized monopulse directly, W-band transmitter with 28 dBm output power is designed and developed. Also, 6 channels of receiver module with low noise figure 13.5 dB and maximum 17 dBm input P1dB is developed. Proposed W-band transceiver module is expected compact radar application for dual-polarized monopulse signal processing system.