• Title/Summary/Keyword: Transceiver module

Search Result 133, Processing Time 0.025 seconds

Implementation of low power algorithm for near distance wireless communication and RFID/USN systems

  • Kim, Song-Ju;Hwang, Moon-Soo;Kim, Young-Min
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • A new power control algorithm for wireless communication which can be applied to various near distance communications and USN/RFID systems is proposed. This technique has been applied and tested to lithium coin battery operated UHF/microwave transceiver systems to show extremely long communication life time without battery exchange. The power control algorithm is based on the dynamic prediction method of arrival time for incoming packet at the receiver. We obtain 16mA current consumption in the TX module and 20mA current consumption in the RX module. The advantage provided by this method compared to others is that both master transceiver and slave transceiver can be low power consumption system.

Implementation of 2.45GHz RF Transceiver System of USN (USN용 2.45GHz RF Transceiver 시스템 구현)

  • Kim, Ji-Eun;Kim, Nae-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.135-136
    • /
    • 2007
  • 2.45 GHz RF Transceiver composed RF module and Digital module for USN(Ubiquitous Sensor Network) has been implemented in this paper. The proposed RF system is designed based on IEEE 802.15.4-2006 PHY standard which has a frequency range from $2.4{\sim}2.4835GHz$. In this transmitter chain, the output power is controlled form 0 to 30 dBm. In this receiver chain, less than 20 dB of NF was obtained.

  • PDF

IEEE 1451 based Smart Module for In-vehicle Networking Systems in Intelligent Vehicles (지능형 차량에서 IVN 시스템을 위한 IEEE 1451 기반 스마트 모듈의 개발)

  • Kim, Man-Ho;Ryu, Se-Hyung;Lee, Kyung-Chang;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.168-171
    • /
    • 2003
  • As vehicles are more intelligent for convenience and safety of drivers, the in-vehicle networking systems and smart modules are essential components for intelligent vehicles. However, for the smart module to widely apply to the IVN systems, two problems are considered as follows. Firstly, because it is very difficult that transducer manufacturers developed the smart module that supports the existing all IVN protocols, the smart module must be independent to the type of networking protocols. Secondly, when the smart module is exchanged due to its failure, it is necessary how the transducer is only exchanged without exchange of the microprocessor and network transceiver. This paper deals with the IEEE 1451 based smart module that describes the digital interface between a network transceiver and sensor module. Finally. efficiency of the IEEE 1451 based smart module was evaluated on the experimental model.

  • PDF

Design and Implementation of High Efficiency Transceiver Module for Active Phased Arrays System of IMT-Advanced (IMT-Advanced 능동위상배열 시스템용 고효율 송수신 모듈 설계 및 구현)

  • Lee, Suk-Hui;Jang, Hong-Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.26-36
    • /
    • 2014
  • The needs of active phased arrays antenna system is getting more increased for IMT-Advanced system efficiency. The active phased array structure consists of lots of small transceivers and radiation elements to increase system efficiency. The minimized module of high efficiency transceiver is key for system implementation. The power amplifier of transmitter decides efficiency of base-station. In this paper, we design and implement minimized module of high efficiency transceiver for IMT-Advanced active phased array system. The temperature compensation circuit of transceiver reduces gain error and the analog pre-distorter of linearizer reduces implemented size. For minimal size and high efficiency, the implented power amplifier consist of GaN MMIC Doherty structure. The size of implemented module is $40mm{\times}90mm{\times}50mm$ and output power is 47.65 dBm at LTE band 7. The efficiency of power amplifier is 40.7% efficiency and ACLR compensation of linearizer is above 12dB at operating power level, 37dBm. The noise figure of transceiver is under 1.28 dB and amplitude error and phase error on 6 bit control is 0.38 dB and 2.77 degree respectively.

Design of the Transceiver Module for RF Data Communication in ISM Frequency Band (ISM 대역 무선데이터 통신용 송수신 모률설계)

  • Kim Yung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1165-1171
    • /
    • 2006
  • In this paper, we designed radio data transceiver to control the machine or equipments for automation in local areas. The designed module can transmit data with 153.6Kbps and uses 424MHz RF carrier to transmit data in the ISM band regulation. It has a processor, CPLD chip of the Altera Company, to control the data in transmitting and receiving. The processor is implemented by programming with VHDL. We will make this module with compact in dimension and higher data rate and apply to RFID technology.

Implementation of Software Defined Radio Module for Channel Decomposition and Composition of Multiple CDMA Signal (다중 CDMA 신호의 채널 분리합성을 위한 Software Defined Radio 모듈의 구현)

  • Rho Byeon-Ho;Jeong Sang-Guk;Rho Seung-Ryong;Kim Yun-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.438-443
    • /
    • 2006
  • In this paper, We had proposed SDR module, and designed FPGA to compose with channel separation of broadband CDMA signal what have multiple FA. At decomposition and composition process of multiple FA CDMA signal, system only progress decomposition and composition of channel selected by software. Therefore, proposed system can manage base station transceiver system very effectively than the other way what send on all band of multiple CDMA signal. Also, it is possible that system sets again coefficient of each filter because it is consisted of SDR module. Therefore, we can easily control coefficient each filter according to base station transceiver system environment.

Design and Implementation of Communication Module for Distributed Intelligence Control Using LonWorks (LonWorks를 이용한 분산 지능 제어를 위한 통신 모듈의 설계 및 구현)

  • Choi Jae-Huyk;Lee Tae-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1654-1660
    • /
    • 2004
  • In this paper, we describes the design and implementation of LonWorks communication module for distributed intelligent control using LonWorks technology of Echelon. LonWorks communication module can be divided hardware and firmware. First, hardwares is divided into microcontroller attaching sensors and LonWorks components for working together control network and data network. Hardwares are consisted of neuron chip, microcontroller, transceiver, LONCard. Second, operating firmware is realized with neuron C using NodeBulider 3.0 development tool. Produced and implemented LonWorks communication module is pretested using LTM-10A, Gizmo 4 I/O board, parallel I/O Interface. For field test, microcontroller module part is tested by HyperTerminal, communication procedure in data network is certified by transmitting and receiving short message using LonMaker for Windows tool. Herewith, LON technology is based on network communication technique using LonWorks.

40 GHz Vertical Transition with a Dual-Mode Cavity for a Low-Temperature Co-fired Ceramic Transceiver Module

  • Byun, Woo-Jin;Kim, Bong-Su;Kim, Kwang-Seon;Eun, Ki-Chan;Song, Myung-Sun;Kulke, Reinhard;Kersten, Olaf;Mollenbeck, Gregor;Rittweger, Matthias
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.195-203
    • /
    • 2010
  • A new vertical transition between a substrate integrated waveguide in a low-temperature co-fired ceramic substrate and an air-filled standard waveguide is proposed in this paper. A rectangular cavity resonator with closely spaced metallic vias is designed to connect the substrate integrated waveguide to the standard air-filled waveguide. Physical characteristics of an air-filled WR-22 to WR-22 transition are compared with those of the proposed transition. Simulation and experiment demonstrate that the proposed transition shows a -1.3 dB insertion loss and 6.2 GHz bandwidth with a 10 dB return loss for the back-to-back module. A 40 GHz low-temperature co-fired ceramic module with the proposed vertical transition is also implemented. The implemented module is very compact, measuring 57 mm ${\times}$ 28 mm ${\times}$ 3.3 mm.