• Title/Summary/Keyword: Trans-human

Search Result 280, Processing Time 0.031 seconds

Gas Chromatographic Method for Analysis of Fatty Acids in Milk Fat with a Single Injection

  • Hwang, Keum-Taek;Shin, Min-Kyeong
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.3
    • /
    • pp.253-256
    • /
    • 2006
  • The purpose of this study was to develop a gas chromatographic (GC) method to analyze fatty acids in milk fat with a single injection. The single-injection GC method we developed for analyzing fatty acid composition can separate a wide range of fatty acid methyl esters from butyric acid to docosahexaenoic acid. It separated 6 isomers of 18:1 (cis-6, cis-9, cis-11, trans-6, trans-9 and trans-11), 4 isomers of 18:2 (cis-9-cis-12, trans-9-trans-12, cis-9-trans-12 and trans-9-cis-12), and 4 isomers of conjugated 18:2 (cis-9- trans-11, trans-9-cis-11, cis-10-trans-12 and trans-10-cis-12).

Antiestrogen, Trans-Tamoxifen Modulation of Human Breast Cancer Cell Growth

  • Lee, Hyung-Ok;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.572-578
    • /
    • 1997
  • To gain further insight into how antiestrogens modulate cell function, the effects of antiestrogen on cell proliferation were studied in human breast cancer cells. We examined the effects of trans-tamoxifen on the proliferation of three human breast cancer cell lines that differed in their estrogen receptor contents. Trans-tamoxifen $(1{\mu}M)$ markedly inhibited the estrogen stimulated proliferation of MCF-7 human breast cancer cells that contained high levels of estrogen receptor $(1.15{\pm}0.03 pmole/mg protein)$ over that of control. In T47D cells that contained low levels of estrogen receptor $(0.23{\pm}0.05 pmole/mg protein)$, trans-tamoxifen $(1{\mu}M)$ showed minimal inhibition of estrogen stimulated cell proliferation over that of control. MDA-MB-231 cells, that contained no detectable levels of estrogen receptors, had their growth unaffected by trans-tamoxifen treatment. These results showed their sensitivity to growth inhibition by antiestrogen conrrelated well with their estrogen receptor content. Also we examined the effect of antiestrogen on cellular progestrone receptor level as well as plasminogen activator activity in MCF-7 cells. Trans-tamoxifen $(1{\mu}M)$ showed maximal inhibition of estrogen stimulated progestrone receptor level as well as plasminogen activator activity in MCF-7 cells that were stimulated by estrogen. It is not clear whether these inhibitions of progestrone receptor and plasminogen activator activity by estrogen are related to the antiestrogen inhibition of cell proliferation of MCF-7 cells. From the results of this study, it is clearly demonstrated that trans-tamoxifen is an antiestrogen in MCF-7 human breast cancer cells. Our data suggest that the biological effectiveness of trans-tamoxifen appear to result from its affinity of interaction with the estrogen receptor.

  • PDF

Upregulation of Nitric Oxide Synthase Activity by All-trans Retinoic Acid and 13-cis Retinoic Acid in Human Malignant Keratinocytes

  • Moon, Ki-Young
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.196-200
    • /
    • 2019
  • Effect of retinoids, i.e., all-trans retinoic acid and 13-cis retinoic acid, on the activity of nitric oxide synthase (NOS) was evaluated in human malignant keratinocytes to examine the possible correlation of retinoids with NOS activities. All-trans retinoic acid and 13-cis retinoic acid did not alter the nitric oxide (NO) production. However, in the presence of lipopolysaccharide (LPS, $1{\mu}g/mL$), they significantly increased NO release in a dose-dependent manner until 48 h at concentrations of $50{\sim}100{\mu}M$. The degree of upregulation of NO by all-trans retinoic acid and 13-cis retinoic acid increased up to 35% and 37%, respectively, compared to that by the control, which demonstrated the upregulation of LPS-inducible nitric oxide synthase (iNOS)-dependent generation of NO as well as showing a crucial link between retinoids-induced activity and NOS. Findings of this study now suggest that the upregulation of LPS-iNOS activity may be associated with modulation of retinoids-induced control of cellular developmental processes, which may produce new therapeutics of retinoids in the complexity of how NO affects human keratinocytes.

Specificity of Intracellular Trans-Splicing Reaction by hTERT-Targeting Group I Intron

  • Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.172-174
    • /
    • 2005
  • Recent anti-cancer approaches have been based to target tumor-specifically associated and/or causative molecules such as RNAs or proteins. As this specifically targeted anti-cancer modulator, we have previously described a novel human cancer gene therapeutic agent that is Tetrahymena group I intron-based trans-splicing ribozyme which can reprogram and replace human telomerase reverse transcriptase (hTERT) RNA to selectively induce tumor-specific cytotoxicity in cancer cells expressing the target RNA. Moreover, the specific ribozyme has been shown to efficiently retard tumor tissues in xenograft mice which had been inoculated with hTERT-expressing human cancer cells. In this study, we assessed specificity of trans-splicing reaction in cells to evaluate the therapeutic feasibility of the specific ribozyme. In order to analyze the trans-spliced products by the specific ribozyme in hTERT-positive cells, RT, 5'-end RACE-PCR, and sequencing reactions of the spliced RNAs were employed. Then, whole analyzed products resulted from reactions only with the hTERT RNA. This study suggested that the developed ribozyme perform highly specific RNA replacement of the target RNA in cells, hence trans-splicing ribozyme will be one of specific agents for genetic approach to revert cancer.

Cytotoxic Constituents from the Whole Plant of Corydalis pallida

  • Kim Hyang Rim;Min Hye-Young;Jeong Yeon Hee;Lee Sang Kook;Lee Nam Sook;Seo Eun-Kyoung
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1224-1227
    • /
    • 2005
  • Here we report the cytotoxic activity of three known compounds isolated for the first time from Corydalis pallida (Papaveraceae). An isoquinoline alkaloid, berberine, exhibited cytototoxic activity against two human cancer cell lines, HT-1080 (human fibrosarcoma) and SNU-638 (human stomach adenocarcinoma), with $IC_{50}$ values of 3.2 and 3.4 $\mu$g/mL, respectively. N­trans-feruloyltyramine and N-trans-feruloylmethoxytyramine were also isolated from this plant but were inactive.

In Vivo Target RNA Specificity of Trans-Splicing Phenomena by the Group I Intron

  • Song, Min-Sun;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.84-86
    • /
    • 2008
  • The Tetrahymena group I intron has been shown to employ a trans-splicing reaction and has been modified to specifically target and replace human telomerase reverse transcriptase (hTERT) RNA with a suicide gene transcript, resulting in the induction of selective cytotoxicity in cancer cells that express the target RNA, in animal models as well as in cell cultures. In this study, we evaluated the target RNA specificity of trans-splicing phenomena by the group I intron in mice that were intraperitoneally inoculated with hTERT-expressing human cancer cells to validate the anti-cancer therapeutic applicability of the group I intron. To this end, an adenoviral vector that encoded for the hTERT-targeting group I intron was constructed and systemically injected into the animal. 5'-end RACE-PCR and sequencing analyses of the trans-spliced cDNA clones revealed that all of the analyzed products in the tumor tissue of the virus-infected mice resulted from reactions that were generated only with the targeted hTERT RNA. This study implies the in vivo target specificity of the trans-splicing group I intron and hence suggests that RNA replacement via a trans-splicing reaction by the group I intron is a potent anti-cancer genetic approach.

Effects of retinoic acid isomers on apoptosis and enzymatic antioxidant system in human breast cancer cells

  • Hong, Tae-Kyong;Lee-Kim, Yang-Cha
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • Retinoic acids (RAs) modulate growth, differentiation, and apoptosis in normal, pre-malignant & malignant cells. In the present study, the effects of RA isomers (all-trans RA, 13-cis RA, and 9-cis RA) on the cell signal transduction of human breast cancer cells have been studied. The relationship between RAs and an enzymatic antioxidant system was also determined. Estrogen-receptor (ER) positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cells were treated with different doses of each RA isomers, all-trans RA, 13-cis RA, or 9-cis RA. Treatment of RA isomers inhibited cell viability and induced apoptosis of MCF-7 cells as a result of increased caspase activity in cytoplasm and cytochrome C released from mitochondria. All-trans RA was the most effective RA isomer in both cell growth inhibition and induction of apoptosis in MCF-7 cells. However, no significant effect of RA isomers was observed on the cell growth or apoptosis in ER-negative MDA-MB-231 cells. In addition, activities of antioxidant enzymes such as catalase and glutathione peroxidase were decreased effectively after treatment of RA in MCF-7 cells, whereas SOD activity was rarely affected. Thus, the present data suggest that all-trans RA is the most potential inducer of apoptosis and modulator of antioxidant enzymes among RA isomers in MCF-7 human breast cancer cells.

Adaptive Postural Control for Trans-Femoral Prostheses Based on Neural Networks and EMG Signals

  • Lee Ju-Won;Lee Gun-Ki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.37-44
    • /
    • 2005
  • Gait control capacity for most trans-femoral prostheses is significantly different from that of a normal person, and training is required for a long period of time in order for a patient to walk properly. People become easily tired when wearing a prosthesis or orthosis for a long period typically because the gait angle cannot be smoothly adjusted during wearing. Therefore, to improve the gait control problems of a trans-femoral prosthesis, the proper gait angle is estimated through surface EMG(electromyogram) signals on a normal leg, then the gait posture which the trans-femoral prosthesis should take is calculated in the neural network, which learns the gait kinetics on the basis of the normal leg's gait angle. Based on this predicted angle, a postural control method is proposed and tested adaptively following the patient's gait habit based on the predicted angle. In this study, the gait angle prediction showed accuracy of over $97\%$, and the posture control capacity of over $90\%$.

ALL TRANS RETINOIC ACID AND 9-cis RETINOIC ACID INHIBIT CELL PROLIFERATION ON HUMAN BREAST CANCER CELL UNE MCF-7

  • Yoon, Hyun-Jung;Gu Kong;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.91-91
    • /
    • 2002
  • We have examine the effect of all trans retinoic acid and 9-cis-retinoic acid on human breast cancer cell proliferation using SRB assay and cell cycle analysis. 1)In MCF-7 cells, in the presence of phenol red, either all trans retinoic acid or 9-cis-retinoic acid treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen.(omitted)

  • PDF