• Title/Summary/Keyword: Trajectory optimization

Search Result 245, Processing Time 0.029 seconds

A Study on the Trajectory Control of a Autonomous Mobile Robot (자율이동로봇을 위한 경로제어에 관한 연구)

  • Cho, Sung-Bae;Park, Kyung-Hun;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2417-2419
    • /
    • 2001
  • A path planning is one of the main subjects in a mobile robot. It is divided into two parts. One is a global path planning and another is a local path planning. This paper, using the formal two methods, presents that the mobile robot moves to multi-targets with avoiding unknown obstacles. For the shortest time and the lowest cost, the mobile robot has to find a optimal path between targets. To find a optimal global path, we used GA(Genetic Algorithm) that has advantage of optimization. After finding the global path, the mobile robot has to move toward targets without a collision. FLC(Fuzzy Logic Controller) is used for local path planning. FLC decides where and how faster the mobile robot moves. The validity of the study that searches the shortest global path using GA in multi targets and moves to targets without a collision using FLC, is verified by simulations.

  • PDF

Design and Implementation of NUI-based Athletic Scene Generation System

  • Choi, Jong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we propose a system and an intuitive interface that can create an athletic scene among athletes. We allow you to enter motion as if you were playing a game, so that the user's action becomes the player's action. The user can take various actions in front of the motion sensor and control the object flying to him. When a user specifies an opponent to pass or attack, and takes appropriate action in front of the motion sensor, the movement trajectory of the object is automatically generated by the physical optimization technique in accordance with the motion. In this way, you can create scenes where multiple players play together in a virtual environment. The method of this paper will be very useful for rapid prototyping for cinematic trailers of based on athletics games or animations.

Multi-Collector Control for Workload Balancing in Wireless Sensor and Actuator Networks

  • Han, Yamin;Byun, Heejung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.113-117
    • /
    • 2021
  • The data gathering delay and the network lifetime are important indicators to measure the service quality of wireless sensor and actuator networks (WSANs). This study proposes a dynamically cluster head (CH) selection strategy and automatic scheduling scheme of collectors for prolonging the network lifetime and shorting data gathering delay in WSAN. First the monitoring region is equally divided into several subregions and each subregion dynamically selects a sensor node as CH. These can balance the energy consumption of sensor node thereby prolonging the network lifetime. Then a task allocation method based on genetic algorithm is proposed to uniformly assign tasks to actuators. Finally the trajectory of each actuator is optimized by ant colony optimization algorithm. Simulations are conducted to evaluate the effectiveness of the proposed method and the results show that the method performs better to extend network lifetime while also reducing data delay.

Trajectory Optimization Method for Portrait Drawing Robot (초상화를 그리는 로봇을 위한 드로잉 경로 최적화 방법)

  • Lee, Geun-Joo;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1165-1168
    • /
    • 2011
  • 본 연구는 휴머노이드 로봇 중에서 사람과 같은 방법으로 초상화를 그리는 로봇 암의 이동 궤적 최적화에 대해 기술한다. 이전에도 이러한 사람의 얼굴을 초상화로 그리는 로봇이 존재하였지만 대부분 인간과 유사한 움직임을 보이지 못하고 딱딱하고 단조로운 움직임을 보였다. 이런 단점을 보완하기 위해 가장 짧은 궤적을 찾는 알고리즘을 사용하여 보다 유연한 움직임을 구현하고, 초상화를 그리는 일련의 과정 중에서 입력된 영상을 가공하여 인간과 같이 그릴 수 있는 좌표를 효과적으로 정렬하고, 추출된 좌표를 바탕으로 로봇 암의 가장 빠르고 효율적인 이동궤적을 구한다.

Low Thrust, Fuel Optimal Earth Escape Trajectories Design (저추력기를 이용한 연료 최적의 지구탈출 궤적 설계 연구)

  • Lee, Dong-Hun;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.647-654
    • /
    • 2007
  • A Discrete continuation Method/homotopy approaches are studied for energy/fuel optimal low thrust Earth escape trajectory by solving a two point boundary value problem(TPBVP). Recently, maneuvers using low thrust propulsion system have been identified as emerging technologies. The low thruster is considered as the main actuator for orbit maneuvers. The cost function consists of a energy/fuel consumption function, and constraints are position and velocity vectors at the terminal escape point. Solving the minimum energy/fuel problem directly is not an easy task, so we adopt the homotopy analysis. Using a solution of the minimum energy, which is solved by discrete continuation method, we obtain the solution of the minimum fuel problem.

Generating Augmented Lifting Player using Pose Tracking

  • Choi, Jong-In;Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.5
    • /
    • pp.19-26
    • /
    • 2020
  • This paper proposes a framework for creating acrobatic scenes such as soccer ball lifting using various users' videos. The proposed method can generate a desired result within a few seconds using a general video of user recorded with a mobile phone. The framework of this paper is largely divided into three parts. The first is to analyze the posture by receiving the user's video. To do this, the user can calculate the pose of the user by analyzing the video using a deep learning technique, and track the movement of a selected body part. The second is to analyze the movement trajectory of the selected body part and calculate the location and time of hitting the object. Finally, the trajectory of the object is generated using the analyzed hitting information. Then, a natural object lifting scenes synchronized with the input user's video can be generated. Physical-based optimization was used to generate a realistic moving object. Using the method of this paper, we can produce various augmented reality applications.

Prediction of the IGS RTS Correction using Polynomial Model at IOD Changes (IOD 변화 시점에서 다항식 모델을 사용한 IGS RTS 보정정보 예측)

  • Kim, Mingyu;Kim, Jinho;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.533-539
    • /
    • 2020
  • Real-time service (RTS) provided by IGS provides correction for GNSS orbit and clock via internet, so it is widely used in fields that require real-time precise positioning. However, the RTS signal may be lost due to an unstable Internet environment. When signal disconnection occurs, signal prediction can be performed using polynomial models. However, the RTS changes rapidly after the GNSS navigation message issue of data (IOD) changes, so it is difficult to predict when signal loss occurs at that point. In this study, we proposed an algorithm to generate continuous RTS correction information by applying the difference in navigation trajectory according to IOD change. The use of this algorithm can improve the accuracy of RTS prediction at IOD changes. After performing optimization studies to improve RTS prediction performance, the predicted RTS trajectory information was applied to precision positioning (PPP). Compared to the conventional method, the position error is significantly reduced, and the error increase along with the signal loss interval increase is reduced.

A Study of Multi-to-Majority Response on Threat Assessment and Weapon Assignment Algorithm: by Adjusting Ballistic Missiles and Long-Range Artillery Threat (다대다 대응 위협평가 및 무기할당 알고리즘 연구: 탄도미사일 및 장사정포 위협을 중심으로)

  • Im, Jun Sung;Yoo, Byeong Chun;Kim, Ju Hyun;Choi, Bong Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In weapon assignment studies to defend against threats such as ballistic missiles and long range artillery, threat assessment was partially lacking in analysis of various threat attributes, and considering the threat characteristics of warheads, which are difficult to judge in the early flight stages, it is very important to apply more reliable optimal solutions than approximate solution using LP model, Meta heuristics Genetic Algorithm, Tabu search and Particle swarm optimization etc. Our studies suggest Generic Rule based threat evaluation and weapon assignment algorithm in the basis of various attributes of threats. First job of studies analyzes information on Various attributes such as the type of target, Flight trajectory and flight time, range and intercept altitude of the intercept system, etc. Second job of studies propose Rule based threat evaluation and weapon assignment algorithm were applied to obtain a more reliable solution by reflection the importance of the interception system. It analyzes ballistic missiles and long-range artillery was assigned to multiple intercept system by real time threat assessment reflecting various threat information. The results of this study are provided reliable solution for Weapon Assignment problem as well as considered to be applicable to establishing a missile and long range artillery defense system.

Load-Balancing Rendezvous Approach for Mobility-Enabled Adaptive Energy-Efficient Data Collection in WSNs

  • Zhang, Jian;Tang, Jian;Wang, Zhonghui;Wang, Feng;Yu, Gang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1204-1227
    • /
    • 2020
  • The tradeoff between energy conservation and traffic balancing is a dilemma problem in Wireless Sensor Networks (WSNs). By analyzing the intrinsic relationship between cluster properties and long distance transmission energy consumption, we characterize three node sets of the cluster as a theoretical foundation to enhance high performance of WSNs, and propose optimal solutions by introducing rendezvous and Mobile Elements (MEs) to optimize energy consumption for prolonging the lifetime of WSNs. First, we exploit an approximate method based on the transmission distance from the different node to an ME to select suboptimal Rendezvous Point (RP) on the trajectory for ME to collect data. Then, we define data transmission routing sequence and model rendezvous planning for the cluster. In order to achieve optimization of energy consumption, we specifically apply the economic theory called Diminishing Marginal Utility Rule (DMUR) and create the utility function with regard to energy to develop an adaptive energy consumption optimization framework to achieve energy efficiency for data collection. At last, Rendezvous Transmission Algorithm (RTA) is proposed to better tradeoff between energy conservation and traffic balancing. Furthermore, via collaborations among multiple MEs, we design Two-Orbit Back-Propagation Algorithm (TOBPA) which concurrently handles load imbalance phenomenon to improve the efficiency of data collection. The simulation results show that our solutions can improve energy efficiency of the whole network and reduce the energy consumption of sensor nodes, which in turn prolong the lifetime of WSNs.

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model (시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종)

  • Park, SeungWoo;Han, SeungWoo;Kim, Linkeun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-80
    • /
    • 2021
  • Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.