• Title/Summary/Keyword: Trajectory Analysis

Search Result 951, Processing Time 0.029 seconds

Time-Efficient Trajectory Planning Algorithms for Multiple Mobile Robots in Nuclear/Chemical Reconnaissance System (화방 정찰 체계에서의 다수의 이동 로봇을 위한 시간 효율적인 경로 계획 알고리즘에 대한 연구)

  • Kim, Jae-Sung;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.1047-1055
    • /
    • 2009
  • Since nuclear and chemical materials could damage people and disturb battlefield missions in a wide region, nuclear/chemical reconnaissance systems utilizing multiple mobile robots are highly desirable for rapid and safe reconnaissance. In this paper, we design a nuclear/chemical reconnaissance system including mobile robots. Also we propose time-efficient trajectory planning algorithms using grid coverage and contour finding methods for reconnaissance operation. For grid coverage, we performed in analysis on time consumption for various trajectory patterns generated by straight lines and arcs. We proposed BCF (Bounded Contour Finding) and BCFEP (Bounded Contour Finding with Ellipse Prediction) algorithms for contour finding. With these grid coverage and contour finding algorithms, we suggest trajectory planning algorithms for single, two or four mobile robots. Various simulations reveal that the proposed algorithms improve time-efficiency in nuclear/chemical reconnaissance missions in the given area. Also we conduct basic experiments using a commercial mobile robot and verify the time efficiency of the proposed contour finding algorithms.

Walking Pattern Analysis for Reducing Trajectory Tracking Error in a Biped Robot (이족보행로봇의 궤적 추종 오차 감소를 위한 걸음새 분석)

  • 노경곤;공정식;김진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.890-897
    • /
    • 2002
  • This paper deals with the reduction of trajectory tracking error by changing the initial postures of a biped robot. Gait of a biped robot depends on the constraints of mechanical kinematics and the initial states including the posture. Also the dynamic walking stability in a biped robot system is analyzed by zero moment point(ZMP) among the stabilization indices. Path trajectory, in which knee joint is bent forward like human's cases, is applied to most cases considered with above conditions. A new initial posture, which is similar to bird's gait, is proposed to decrease trajectory tracking error and it is verified through real experimental results.

A Study on Effect Analysis of Trajectory-Based Arrival Management using Continuous Descent Operations (연속강하운용을 이용한 궤적 기반의 항공기 도착 관리 효과 분석 연구)

  • Eun-Mi Oh;Daekeun Jeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, we propose trajectory-based arrival management using CDO (Continuos Descent Operations). The operational procedures with TBO (Trajectory-Based Operations) concept were established to allow aircraft and ground system to share the trajectories with each other in real time. The proposed operational concept was validated in the air traffic control simulation environment, which consists of controller working position, pseudo pilot system, air traffic generation system, and controllers' decision support system for arrival management using CDO. Simulation results compared with actual flight data indicate that proposed concept could improve the efficiency of traffic flow management in terms of total descending time and fuel consumption. And it was confirmed that if there is a system that can share and utilize the synchronized trajectory, it can be helpful to control arrival aircraft and apply CDO concept.

A Basic Study of Crane Trajectory Distance Calculation for Sustainable PC Members Erection of Large Logistic Building (대형물류센터 PC부재 양중을 위한 크레인 궤적거리 산정 기초 연구)

  • Lim, Jeeyoung;Oh, Jinhyuk;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.77-78
    • /
    • 2023
  • As large logistics buildings have high floor heights and long spans, these buildings are designed as PC structures, and large cranes are used to lift PC members. PC erection planning can generally cause errors depending on the field engineer's experience. To solve this problem, a basic analysis method is needed to establish a systematic PC member erection plan. Crane work can be minimized if the trajectory is easily and quickly calculated according to the location of the crane and applied to the site. Therefore, the objective of this study is a basic study of crane trajectory distance calculation for sustainable PC members erection of large logistic building. In this study, a crawler crane commonly used for lifting PC members is limited. The trajectory distance for the PC erection plan was automatically calculated using the algorithm.

  • PDF

Trans Lunar Injection (TLI) Maneuver Design and Analysis using Finite Thrust (제한추력을 이용한 달 천이(TLI) 기동의 설계 및 해석)

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.998-1011
    • /
    • 2010
  • For preparing Korean lunar missions, an Earth-Moon transfer trajectory is designed and analyzed using finite thrust. To be a more realistic scenario, kick motor's performance which is used for TLI (Trans Lunar Injection) maneuver is assumed to have a certain maximum capability. Under this assumption, optimal Earth-Moon transfer trajectory analysis is made from the beginning of Earth departure to the final lunar closest approach. As a results, optimal Earth-Moon transfer trajectory solutions with finite thrust are compared to those of designed with impulsive thrust in previous study. It is confirmed that if the trajectory solutions derived with impulsive burn is directly applied to estimate the finite burn trajectory solutions, careful consideration for finite burn losses must be paid as for TLI maneuver. Presented algorithm and various results will give numerous insights into the future Korea's Lunar missions using finite thrust engines.

Unguided Rocket Trajectory Analysis under Rotor Wake and External Wind (로터 후류와 외풍에 따른 무유도 로켓 궤적 변화 해석)

  • Kim, Hyeongseok;Chae, Sanghyun;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.41-51
    • /
    • 2018
  • Downwash from helicopter rotor blades and external winds from various maneuvering make an unguided rocket change its trajectory and range. For the prediction of the trajectory and range, it is essential to consider the downwash effect. In this study, an algorithm was developed to calculate 6-Degree-Of-Freedom(6 DOF) forces and moments exerting on the rocket, and total flight trajectory of a 2.75-inch unguided rocket in a helicopter downwash flow field. Using Actuator Disk Model(ADM) analysis result, the algorithm could analyze the entire trajectory in various initial launch condition such as launch angle, launch velocity, and external wind. The algorithm that considered the interference between a fuselage and external winds could predict the trajectory change more precisely than inflow model analysis. Using the developed algorithm, the attitude and trajectory change mechanism by the downwash effect were investigated analyzing the effective angle of attack change and characteristics of pitching stability of the unguided rocket. Also, the trajectory and range changes were analyzed by considering the downwash effect with external winds. As a result, it was concluded that the key factors of the rocket range change were downwash area and magnitude which effect on the rocket, and the secondary factors were the dynamic pressure of the rocket and the interference between a fuselage and external winds. In tailwind case which was much influential on the range characteristics than other wind cases, the range of the rocket rose as increasing the tailwind velocity. However, there was a limit that the range of the rocket did not increase more than the specific tailwind velocity.

Mouth Shape Trajectory Generation Using Hangul Phoneme Analysis (한글 음절 분류를 통한 입 모양 궤적 생성)

  • 박유신;김종수;김태용;최종수
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.53-56
    • /
    • 2003
  • In this paper, we propose a new method which generates the trajectory of the mouth shape for the characters by the user inputs. It is based on the character at a basis syllable and can be suitable to the mouth shape generation. In this paper, we understand the principle of the Korean language creation and find the similarity for the form of the mouth shape and select it as a basic syllable. We also consider the articulation of this phoneme for it and create a new mouth shape trajectory and apply at face of an 3D avatar.

  • PDF

Optimization Analysis of Trajectory for Re-Entry Vehicle Using Global Orthogonal Polynomial

  • Lee Dae-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1557-1566
    • /
    • 2006
  • We present a procedure for the application of global orthogonal polynomial into an atmospheric re-entry maneuvering problem. This trajectory optimization is imbedded in a family of canonically parameterized optimal control problem. The optimal control problem is transcribed to nonlinear programming via global orthogonal polynomial and is solved a sparse nonlinear optimization algorithm. We analyze the optimal trajectories with respect to the performance of re-entry maneuver.

Transient Performance Improvement in the Boundary Control of Boost Converters using Synthetic Optimized Trajectory

  • Feng, Gaohui;Yuan, Liqiang;Zhao, Zhengming;Ge, Junjie;Ye, Xiuxi;Lu, Ting
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.584-597
    • /
    • 2016
  • This paper focuses on an improvement in the transient performance of Boost converters when the load changes abruptly. This is achieved on the basis of the nature trajectory in Boost converters. Three key aspects of the transient performance are analyzed including the storage energy change law in the inductors and capacitors of converters during the transient process, the ideal minimum voltage deviation in the transient process, and the minimum voltage deviation control trajectory. The changing relationship curve between the voltage deviation and the recovery time is depicted through analysis and simulations when the load suddenly increases. In addition, the relationship curve between the current fluctuation and the recovery time is obtained when the load suddenly decreases. Considering the aspects of an increasing and decreasing load, this paper proposes the transient performance synthetic optimized trajectory and control laws. Through simulation and experimental results, the transient performances are compared with the other typical three control methods, and the ability of proposed synthetic trajectory and control law to achieve optimal transient performance is verified.

Integration of the Engine Control into the Optimal Trajectory Determination for a Spaceplane

  • Matsunaga, Kensuke;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Okabe, Yoriji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.742-748
    • /
    • 2004
  • In this paper are presented TSTO system analysis including some controlled variables on the engine operation such as a fuel flow rate and a pressure ratio of compressor, as well as variables on the trajectory. TSTO studied here is accelerated up to Mach 6 by a fly-back booster powered by air breathing engines. Three different types of engine cycle were treated for propulsion system of the booster, such as a turbo ramjet, a precooled turbojet and an EXpander cycle Air Turbo Ramjet (ATREX). The history of the controlled variables on the engine operation was optimized by Sequential Quadratic Programming (SQP) to accomplish the minimum fuel consumption. The trajectory was also optimized simultaneously. The results showed that the turbo ramjet gave the best fuel consumption. The optimal trajectory was almost the same except in the transonic range and just before reaching to Mach 6. The history of the pressure ratio of compressor considerably depended on the engine type. It is concluded that simultaneous optimization for engine control and trajectory is effective especially for a high-speed airplane propelled by turbojets like the TSTO booster.

  • PDF