The purpose of training a convolutional neural network (CNN) is to obtain weight factors that give high classification accuracies. The initial values of hyper-parameters affect the training results, and it is important to train a CNN with a suitable hyper-parameter set of a learning rate, a batch size, the initialization of weight factors, and an optimizer. We investigate the effects of a single hyper-parameter while others are fixed in order to obtain a hyper-parameter set that gives higher classification accuracies and requires shorter training time using a proposed VGG-like CNN for training since the VGG is widely used. The CNN is trained for four datasets of CIFAR10, CIFAR100, GTSRB and DSDL-DB. The effects of the normalization and the data transformation for datasets are also investigated, and a training scheme using merged datasets is proposed.
Serdar Yuksel;Emre Ozmen;Alican Baris;Esra Circi;Ozan Beytemur
Journal of Korean Neurosurgical Society
/
제67권1호
/
pp.50-59
/
2024
Objective : This study aimed to conduct a bibliometric analysis on pelvic parameter related research over the last 30 years, analyzing trends, hotspots, and influential works within this field. Methods : A comprehensive Web of Science database search was performed. The search yielded 3249 results, focusing on articles and reviews published from 1992 to 2022 in English. Data was analyzed using CiteSpace and VOSviewer for keyword, authorship, and citation burst analysis, co-citation analysis, and clustering. Results : The number of publications and citations related to pelvic parameters has increased exponentially over the last 30 years. The USA leads in publication count with 1003 articles. Top publishing journals include the European Spine Journal, Spine, and Journal of Neurosurgery: Spine, with significant contributions by Schwab, Lafage V, and Protoptaltis. The most influential articles were identified using centrality and sigma values, indicating their role as key articles within the field. Research hotspots included spinal deformity, total hip arthroplasty, and sagittal alignment. Conclusion : Interest in pelvic parameter related research has grown significantly over the last three decades, indicating its relevance in modern orthopedics. The most influential works within this field have contributed to our understanding of spinal deformity, pelvic incidence, and their relation to total hip arthroplasty. This study provides a comprehensive overview of the trends and influential research in the field of pelvic parameters.
본 논문에서는 비전공자들을 위한 교양과정으로, 기초 인공신경망 과목 커리큘럼을 설계하기 위해, 지도학습 인공신경망 매개변수 최적화 방법과 활성화함수에 대한 기초 교육 방법을 제안하였다. 이를 위해, 프로그래밍 없이, 매개 변수 최적화 해를 스프레드시트로 찾는 방법을 적용하였다. 본 교육 방법을 통해, 인공신경망 동작 및 구현의 기초 원리 교육에 집중할 수 있다. 그리고, 스프레드시트의 시각화된 데이터를 통해 비전공자들의 관심과 교육 효과를 높일 수 있다. 제안한 내용은 인공뉴런과 Sigmoid, ReLU 활성화 함수, 지도학습데이터의 생성, 지도학습 인공신경망 구성과 매개변수 최적화, 스프레드시트를 이용한 지도학습 인공신경망 구현 및 성능 분석 그리고 교육 만족도 분석으로 구성되었다. 본 논문에서는 Sigmoid 뉴런 인공신경망과 ReLU 뉴런 인공신경망에 대해 음수허용 매개변수 최적화를 고려하여, 인공신경망 매개변수 최적화에 대한 네가지 성능분석결과를 교육하는 방법을 제안하고 교육 만족도 분석을 실시하였다.
Journal of the Korean Academy of Child and Adolescent Psychiatry
/
제18권1호
/
pp.26-30
/
2007
This practice parameter for non-pharmacological treatment for attention-deficit hyperactivity disorder (ADHD) review the domestic and international literature on the psychosocial treatment of children and adolescents with ADHD. This parameter include the parental training & education, cognitive behavior therapy(group or individual), social skill training, family therapy, play therapy (individual psychotherapy) and non-traditional therapy (art therapy, herbal therapy et al). Among them, there is some proven evidence only in parental training & education and cognitive behavior therapy. So, this parameter describes some details only in the field of parental training & education and cognitive behavior therapy. The efficacy or effectiveness, especially, cost-effectiveness of specific psychosocial treatment method for ADHD cannot be fairly assessed due to the scarcity of controlled clinical data. Based on the clinical expert consensus and limited evidence, we cautiously suggest the practice recommendations about the non-pharmacological psychosocial treatment fur children and adolescents with ADHD.
We present a machine learning approach to estimating stellar atmospheric parameters, effective temperature (Teff), surface gravity (log g), and metallicity ([Fe/H]) for stars observed during the course of the Sloan Digital Sky Survey (SDSS). For training a neural network, we randomly sampled the SDSS data with stellar parameters available from SEGUE Stellar Parameter Pipeline (SSPP) to cover the parameter space as wide as possible. We selected stars that are not included in the training sample as validation sample to determine the accuracy and precision of each parameter. We also divided the training and validation samples into four groups that cover signal-to-noise ratio (S/N) of 10-20, 20-30, 30-50, and over 50 to assess the effect of S/N on the parameter estimation. We find from the comparison of the network-driven parameters with the SSPP ones the range of the uncertainties of 73~123 K in Teff, 0.18~0.42 dex in log g, and 0.12~0.25 dex in [Fe/H], respectively, depending on the S/N range adopted. We conclude that these precisions are high enough to study the chemical and kinematic properties of the Galactic disk and halo stars, and we will attempt to apply this technique to Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), which plans to obtain about 8 million stellar spectra, in order to estimate stellar parameters.
This paper proposes training algorithms of neuro-fuzzy systems. First, we introduce a structure training algorithm, which produces the necessary number of hidden nodes from training data. From this algorithm, initial fuzzy rules are also obtained. Second, the parameter training algorithm using evolution strategy is introduced. In order to show their usefulness, we apply our neuro-fuzzy system to a nonlinear system identification problem. It was found from experiments that proposed training algorithms works well.
Journal of information and communication convergence engineering
/
제8권3호
/
pp.267-272
/
2010
For the last decade, recurrent neural networks (RNNs) have been commonly applied to communications channel equalization. The major problems of gradient-based learning techniques, employed to train recurrent neural networks are slow convergence rates and long training sequences. In high-speed communications system, short training symbols and fast convergence speed are essentially required. In this paper, the derivative-free Kalman filter, so called the unscented Kalman filter (UKF), for training a fully connected RNN is presented in a state-space formulation of the system. The main features of the proposed recurrent neural equalizer are fast convergence speed and good performance using relatively short training symbols without the derivative computation. Through experiments of nonlinear channel equalization, the performance of the RNN with a derivative-free Kalman filter is evaluated.
본 논문은 두 가지 비교 실험을 통하여 효과적 음성인식 시스템을 제안한다. 분별적 이진 패턴 분류기인 SVM(Support Vector Machines)은 특징 공간에서 비선형 경계를 찾아 분류하는 방법으로 적은 학습 데이터에서도 좋은 분류 성능을 나타낸다고 알려져 있다. 본 논문에서는 학습데이터 수에 따른 HMM(Hidden Markov Model)과 SVM의 인식 성능을 비교하고, 최적의 특징 파라메터를 선택하기 위해 SVM을 이용하여 주성분해석과 독립성분분석을 적용하여 MFCC(Mel Frequency Cepstrum Coefficient)의 특징 공간을 변화시키면서 각각의 인식 성능을 비교 검토하였다. 실험 결과 SVM은 HMM에 비해 적은 학습데이터에서도 높은 인식 성능을 보여주었고, 독립성분분석에 의한 특징 파라메터가 특징 공간상에서의 높은 선형 분별성에 의해 다른 특징 파라메터보다 인식 성능에서 우수함을 확인 할 수 있었다.
Fuzzy Min-Max Neural Network(FMMNN) is a powerful classifier, It has, however, some problems. Learning result depends on the presentation order of input data and the training parameter that limits the size of hyperbox. The latter problem affects the result seriously. In this paper, the new approach to alleviate that without loss of on-line learning ability is proposed. The committee machine is used to achieve the multi-resolution FMMNN. Each expert is a FMMNN with fixed training parameter. The advantages of small and large training parameters are used at the same time. The parameters are selected by performance and independence measures. The Decision of each expert is guided by the gating network. Therefore the regional and parametric divide and conquer scheme are used. Simulation shows that the proposed method has better classification performance.
본 논문에서는 의료영상의 응용분야로서 방출전산화단증 영상에 사용되는 베이지안 방법을 위한 Gibbs 사전정보의 평활 파라미터를 결정하는 문제를 다룬다. 특히, 광역 하이퍼파라미터(평활 파라미터)가 해외 편향과 분산의 균형을 조절하는 단순 평활사전정보(일명 멤브레인)를 연구 대상으로 한다. 본 논문에서 사용된 방법은 관측된 훈련데이터에 MI. 방법을 적용한 하이퍼파라미터 추정법에 기반을 두며, 이러한 접근방법에 대한 동기에 대하여도 논한다. 멤브레인 사전정보를 위한 평활 파라미터의 경우 단순한 ML 추정법을 적용하여도 파라미터가 쉽게 추정될 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.