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Abstract— For the last decade, recurrent neural 
networks (RNNs) have been commonly applied to 
communications channel equalization. The major problems 
of gradient-based learning techniques, employed to train 
recurrent neural networks are slow convergence rates and 
long training sequences. In high-speed communications 
system, short training symbols and fast convergence speed 
are essentially required. In this paper, the derivative-free 
Kalman filter, so called the unscented Kalman filter (UKF), 
for training a fully connected RNN is presented in a state-
space formulation of the system. The main features of the 
proposed recurrent neural equalizer are fast convergence 
speed and good performance using relatively short training 
symbols without the derivative computation. Through 
experiments of nonlinear channel equalization, the 
performance of the RNN with a derivative-free Kalman 
filter is evaluated. 

 
Index Terms—Derivative-Free Kalman Filter,  Parameter 

Estimation,  Channel Equalization.  
 
 

I. INTRODUCTION 
 

 Recurrent neural networks (RNNs) are essentially 
dynamical systems where the states evolve according to 
certain nonlinear state equations. Due to  their dynamic 
nature, they have been successfully applied to many 
problems including modeling and processing of temporal 
signals, switch as prediction, adaptive control , system 
identification, and speech recognition[1]. In addition, the 
sequential nature of inputs and outputs in many field 
makes RNNs attractive for the general task of sequence 
prediction, sequence generation, or sequence transduction. 
In digital communications, channel equalization is an 
example of sequential data processing, and an adaptive 
filter used as the equalizer in the communication receiver 
needs on-line learning to update its free parameters. 
Recently, RNNs have been successfully applied to 
channel equalization with a variety of network structures 
and learning algorithms [2],[3]. 

Many structures for RNNs have been developed, which 
are ranging from fully connected to partially (or locally) 

connected networks and ranging from single-layered to 
multi-layered networks. However, common problems to 
be solved are still remained: analysis of the dynamical 
behavior of RNNs, and contrivance of learning algorithms 
to cope with the complexity induced by network’s 
dynamics. Hence intensive research works on dynamical 
network properties and the corresponding learning 
techniques have attained a good theoretical grounding of 
many popular algorithms. We hereby focus on learning 
algorithms. 

Typical learning algorithms for RNNs are real-time 
recurrent learning (RTRL) [4] for on-line learning and 
back-propagation through time (BPTT) for off-line 
learning. These algorithms are totally based on the 
gradient method using first-order derivative 
information. The training problem is to update the free 
parameters of the networks. Since a weight updating 
affects the states at all times during the course of 
network evolution, obtaining the error gradient is a 
complicated procedure. Moreover, due to the first-
order derivative information, the RTRL and BPTT 
many exhibit slow convergence speed relative to 
learning techniques based on second-order derivative 
information,. The extended Kalman filter (EKF) forms 
the basis of a second-order neural network training 
approach. The essence of recursive EKF procedure is 
that an approximate covariance matrix that encodes 
second-order information about the train problem is 
maintained and evolved during training. However, the 
EKF is difficult to implement, difficult to tune, and 
only reliable for systems that are almost linear on the 
time scale of the update intervals [5]. In addition, the 
EKF provides first-order approximations to optimal 
nonlinear parameter estimation and needs the 
computation of derivative matrix (or Jacobians) in the 
linearization process of the nonlinear system. 

In this paper, the derivative-free Kalman filter, called 
the unscented Klaman filter [5],[6], is presented for 
training RNNs. We demonstrate the applicability of the 
UKF to RNN training. The performance of the UKF 
algorithm in nonlinear channel equalization applications 
is evaluated and compared with the RTRL. 
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II. FULLY CONNECTED RECURRENT  
NEURAL NETWORK 

 
The formulation presented here is based on the 

standard fully connected RNN. The fully connected 
RNN consists of q neurons with l  external inputs, as 
shown in Fig. 1. Let the q -by- l  vector  ( )x k         
denotes the state of the network in the form of a 
nonlinear discrete-time system, the ( 1l + )-by-1 vector 

( )u k denotes the input applied the network, and the 
p -by-1 vector ( )y k  denotes the output of the 

network. The dynamic behavior of the network, 
assumed to be noise free, is described by [7]. 

 
( 1) ( ( ) ( ) ( ) ( )x ux k W k x k W k u kϕ+ = +    

( ( ) ( )W k z kϕ=                 (1) 
( ) ( 1)y k C x k= +                     (2) 

 

 

Figure 1. A layout of fully connected recurrent neural 
network 

 
Where ( )xW k  is a q -by- p matrix, ( )uW k is a q -by-
( 1l + ) matrix, C is a p -by- q matrix; and ϕ : 

q q→ is a diagonal map. The two separate weight 
matrices can be merged into a whole weight matrix ( )W k  
with q -by-( 1q l+ + ) dimension, that is,  

( ) [ ( ) ( )]x uW k W k W k=              (3) 

And the ( 1q l+ + )-by-1 vector ( )z k  can be defined as 

( )
( )

( )
x k

z k
u k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                    (4) 

where ( )x k  is the q -by-1 state vector and ( )u k  is 
( l +1)-by-1 input vector. The first element of ( )u k is unity, 
which is the bias input, and in a corresponding way, the 
first column of ( )uW k is bias terms applied neurons. The 
dimensionality of the state space, namely q is the order of 
the system. Therefore the state –space model of Fig. 1 is 
an l -input, q-output recurrent model of order q . Eq.(1) 
is the process equation of the model and Eq.(2) is the 
measurement equation. The process equation (Eq.(1)) in 
the state-space description of the network is rewritten in 
the following form:  

1

2

( ( ) ( )
( ( ) ( )

( 1) :
:

( ( ) ( )

T

T

T
q

w k z k
w k z k

x k

w k z k

ϕ
ϕ

ϕ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                (5) 

Where ( )ϕ ⋅  is an activation function, and the ( q l+ + 1)-
by-1 weight vector ( )iw k , which is connected to the i th 
neuron in the recurrent network, corresponds to the i th 
column of the transposed weight matrix ( )TW k . 
 
 
III. A DERIVATIVE-FREE KALMAN FILTER FOR 

FO PARAMETER ESTIMATION 
 
The Kalman filter is a widely used filtering strategy, 

over 30 years in the control and signal processing 
community. The extended Kalman filter(EKF), which 
simply linearizes all nonlinear models, would be a popular 
method, when the linear Kalman filter is applied to 
nonlinear systems. However, the EKF is difficult to 
implement, difficult to tune, and only reliable for systems 
that are almost linear on the time scale of the update 
intervals [5]. In parameter estimation of neural networks, 
the EKF provides first-order approximations to optimal 
nonlinear estimation through the linearization of the 
nonlinear system. These approximations can include large 
errors in the true posterior mean and covariance of the 
transformed Gaussian random variable, which may lead to 
suboptimal performance and sometimes filter divergence 
[8]. The unscented Kalman filter(UKF), first proposed by 
Julier and Uhlmann [6] and further extended by Wan and 
van der Merwe [8], is an alternative to the EKF algorithm. 
The UKF provides third-order approximation of process 
and measurement errors for Gaussian distributions and at 
least second-order approximation for non-Gaussian 
distributions [9]. The UKF may have more accurate 
estimation features over the EKF in applications [5]. In 
addition, the UKF does not require the computation of 
Jacobians, for linearizing the process and measurement 
equations. This leads to a simpler implementation devoid 
of inverse matrix errors.  
 The unscented transform(UT) is a method for calculating 
the statistics of a random variable which undergoes a 
nonlinear transformation [6]. 

Consider an L -by-1 random variable x  that is 
nonlinearly transformed to yield a random variable y  
through a nonlinear function, ( )y f x= . In order to 

calculate the statistics of y , a matrix χ  of 2L +1 
sigma vectors 

iχ  is formed as the followings: 

0

( ( ) ) , 1, ...,

( ( ) ) , 1, ..., 2

o

i xx i

i xx i L

x i

x L P i L

x L P i L L

χ

χ λ

χ λ −

= =

= + + =

= − + = +

(6) 
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Where x  and covariance 
xxP are the mean and 

covariance of x , respectively, and 2( )L Lλ α κ= + − is a 
scaling factor. The constantα determines the spread of the 
sigma points around x ; it is set to a small positive value, 
typically in the range 0.001 α〈 〈 1. The constantκ  is a 
secondary scaling factor that is usually set to 3- L . The 
sigma points { }2

0

L
i i

χ
=

 are propagated through the nonlinear 
function 

( ), 0, , 2i if i Lγ χ= = L .        (7) 

This propagation produces corresponding vector set 
that can be used to estimate the mean and covariance 
matrix of the nonlinear transformed vector y . We can 
approximation the mean and covariance matrix of y  
using a weighted sample mean and covariance of the 
posterior sigma points[8]. 

2

0

L
m

i i
i

y W γ
=

=∑                      (8) 

2

0
( )( )

L
c T

yy i i i
i

P W y yγ γ
=

= − −∑          (9) 

Where the weighting factors are given by 

0
mW

L
λ
λ

=
+

 

2
0 (1 )cW

L
λ α β
λ

= + − +
+

            (10) 

 1 , 1, 2,....2 .
2( )

m c
i iW W i L

L λ
= = =

+
 

In the above equation s, the superscripts m and c  
refer to the mean and covariance, respectively. β is used 
to take account for prior knowledge on the distribution of 
x , and β =2 is the optimal choice for Gaussian 
distributions. 

To enable the Kalman filter for training the RNN, the 
network’s behavior can be recast as the following 
nonlinear discrete-time system: 

( 1) ( ) ( )w k w k kω+ = +           (11) 

( ) ( ( ), ( )) ( )y k h w k z k kν= +      (12) 

where all vectors and matrix are complex numbers, 
nonlinear function ( )h ⋅ is given by 

( ( ), ( )) ( ( ) ( ))h w k z k C w k z kϕ=       (13) 

And the weight vector ( )w k is defined by 

  
1

2

( )
( )

( )

( )q

w k
w k

w k

w k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

                (14) 

Where ( )( 1, 2, , )iw k i q= L is the i th column of the 
transposed weight matrix ( )TW k . Eq.(18), known as the 
process equation, specifies that the state of the system is 
given by the network’s weight parameter values ( )w k and 
is characterized as a stationary process corrupted by 
process noise ( ).kω The measurement equation,  given 
in Eq.(19), represents the network’s output vector ( )y k as 
the nonlinear function ( )ϕ ⋅ of the weight vector 

( )w k and the vector ( )z k which include both the input 
vector ( )u k and the recurrent node activations ( ).x k This 
equation is buried by random measurement noise 

( ).kν The process noise ( )kω is typically characterized 
as zero-mean, white noise with covariance given by 

[ ] ( ).T
i j ijE Q kωω δ=  Similarly, the measurement noise 

( )kν is also characterized as zero-mean, white noise with 
covariance given by [ ] ( ).T

i j ijE R kν ν δ=  From the state-
space model of the RNN given in equations (11) and (12), 
the cost function to be minimized in the mean-squared 
error (MSE) sense is: 

1( ) ( ) ( ) ( )TJ w e k R k e k−=              (15) 

Where the error vector ( )e k is defined by using the 
measurement equation (Eq. (2)): 

ˆ( ) ( ) ( )e k y k y k= −                 (16) 

Where ˆ( )y k denotes the desired output vector. 
If the measurement-noise covariance ( )R k is a constant 

diagonal matrix, it cancels out in the algorithm, and 
therefore can be set arbitrarily. The process-noise 
covariance ( ) [ ( ) ( ) ]TQ k E k kω ω= affects the convergence 
rate and the tracking performance. We define ( )R k and 

( )Q k as 
1( )R k μ−= Ι                       (17) 

 1( ) ( 1) ( )RLSQ k P kλ−= −               (18) 

Where (0,1]λ∈ is often referred to as the forgetting 
factor, in recursive least-squares(RLS) algorithms[9]. 

The UKF effectively evaluates the Jacobian through its 
sigma-point propagation, without the need to perform any 
analytical derivative calculation. Specific equations for 
the RNN using the UKF algorithm are summarized below. 
The weight vector in the network and the covariance 
matrix are initialized with 

ˆ (0) [ ]w E w=                         (19) 
ˆ ˆ(0) [ (0))( (0) ].TP E w w w w= − −            (20) 

The sigma-point calculation is given by 

( ) ( )( ( ) ( ))k L P k Q kλΓ = + +             (21) 
ˆ ˆ( ) [ ( ), ( ) ( ),k w k w k kΝ = + Γ ˆ ( ) ( )w k k− Γ ]     (22) 
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( ) ( ( ), ( ))k h k z kΜ = Ν                  (23) 
ˆ( ) ( ( ), ( )).y k h w k z k=                    (24) 

The measurement-update equations are 
2

0

( ) ( ( ) ( ))( ( ) ( )) ( )
L

c T
yy i i i

i

P k W k y k k y k R k
=

= Μ − Μ − +∑     (25) 

2

0

ˆ( ) ( ( ) ( ))( ( ))
L

c T
wy i i i

i

P k W k w k k
=

= Ν − Ν∑      (26) 

1( ) ( ) ( )wy yyk P k P kρ −=                      (27) 

ˆ ˆ( 1) ( ) ( ) ( )w k w k k e kρ+ = +                 (28) 
( 1) ( ) ( ) ( ) ( ).T

yyP k P k k P k kρ ρ+ = −          (29) 

The weight vector of the RNN is updated on-line with 
the above equations. 

 
 

IV. NONLINEAR CHANNEL EQUATION 
 

A. Communication System Model  
A general model of a digital communications system 

with a decision feedback equalizer (DFE) is displayed in 
Fig.2. It includes both linear and nonlinear distortions. A 
sequence, {s(k)}, extracted from a source of information 
is transmitted, and the transmitted symbols are then 
corrupted by channel distortion and buried in additive 
white Gaussian noise (AWGN). The channel with 
nonlinear distortion is modeled as 

 ˆ( ) ( ( )) ( )r k g r k kν= +           

            
1

0
( ( )) ( )

N

i
i

g h s k i kν
−

=

= − +∑
 

      (30) 

Where ( )g ⋅ is a nonlinear distortion, 
ih is the linear 

finite impulse response of the channel with length ,N  
( )s k is the sequence of transmitted symbols, and ( )kν is 

the AWGN with zero mean and variance 2
0.σ  The DFE is 

characterized by the three integers, ,m n and ,d known 
as the feedforward order, feedback order, and decision 
delay, respectively. The inputs to the DFE therefore 
consist of the feedforward inputs 

[ ( ), ( 1), , ( 1)]( ) Tr k r k r k mr k − − += L and feedback inputs 
( ) [ ( 1), , ( )] .Tu k u k u k n= − −L  The output of the DFE is 
( )y k and it is passed through a decision device to 

determine the estimated symbol ˆ( ).s k d−  It is sufficient 
to use feedback order[11], 

2n N m d= + − −             (31) 

Since the transmitted symbols contributing to decision 
of the equalizer at time k are given by 

( ) [ ( ), ( 1), , ( 2)]Ts k s k s k s k m N= − − − +L for the 
feedforward order 1 .m d= +  The decision-feedback 
recurrent neural equalizer (DFRNE) using the fully 

connected RNN is used as the DFE in the following 
experiments. When the RNN is used as the DFRNE, the 
input vector ( )u k includes the received signals from the 
channel and the decision feedback inputs, as well as the 

bias input.  
 

 
Figure 2. A communications system with decision feedback 

equalizer 
 

B. Experiment 1: Convergence Rate 
Channel Model 1:A linear channel model with a non-

minimum phase has the transfer function: 
1 2

1 1 2( ) oH z b b z b z− −= + +  

Where the channel impulse response is         
b

1 2[ ] .T
ob b b=  We use b= [0.3482 0.8704 0.3482], 

which is generally used for channel equalization in the 
literature[2][3]. The nonlinear channel is modeled as 

ˆ( ) ( ( )) ( )
ˆtanh( ( )) ( )

r k g r k k
r k k

ν
ν

= +
= +

 

Where a nonlinearity is applied to the output of the 
linear channel. This non linear distortion of the channel 
may take into account saturation effects due to 
transmission amplifiers. The learning rate of the RTRL is 
chosen empirically as 0 .1η = and this value ensures a 
stable convergence. The parameters for the UKF are 
chosen empirically as 0 .1α =  and 0 .99 .λ =  The 
decision delay is 2 .d =  
Convergence properties of the DFRNEs used in the 

simulations are depicted in Fig.3, with log and linear 
scales of MSE values. These results are ensembles-
averaged over 200 independent runs. Each run has a 
different BPSK random sequence and random initial 
weights for all DFRNEs and is performed at a SNR of 14 
dB. The UKF outperforms the RTRL in terms of 
convergence speed. For instance, MSE value of the UKF 
reaches around -55 dB after 210 training symbols, while 
MSE value of the RTRL reaches -23 dB. 
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10
(a) y-axis: Log scale(10 log MSE))    

 

(b) y-axis: Linear scale  
Figure 3. Convergence properties for Channel Model 1 

 
As shown in Fig. 3(b), the UKF reaches steady state 

after 100 iterations. These results confirm that UKF 
algorithm provides an improvement with regard to both 
the convergence speed and the steady-state MSE. Fig.4 
shows the bit-error rate (BER) performance, averaged 
over 100 independent trails. In each trail, the first 100 
symbols are used for training and the next 410 symbols 
are used for testing.  

 
Figure 4. BER performance for Channel Model 1(100 training 

symbols) 
 
The weight vectors of the DFRNEs are frozen after the 

training, and the transmission symbols are evaluated at the 
decision-directed mode. The UKF attains about 1.3 dB of 
improvement over the RTRL at 410− of BER. We have 
observed that the RTRL requires more than 200 training 
symbols to achieve the same BER performance of the 
UKF. 

 
(a) Time-varying coefficients at 0.5Hz 

    
(b) Convergence at SNR=15 dB 

Figure 5.Channel tracking capability for Channel Model 2. 
 

C. Experiment 2: Tracking Capability 
Channel tracking performance of the DFRNEs is tested 

for a time-varying channel, because tracking is a steady-
state phenomenon, in contrast with convergence which is 
a transient phenomenon [9]. A nonlinear channel with 
time-varying coefficients is considered here. 

Channel Model 2: A time-varying discrete-time 
channel is described by  

1 2
2 1 1 2 2( ) ( ( ) ( ( )) ( ( ))o oH z b a k b a k z b a k z− −= + + + + +  

The nonlinear distortion employed in Channel Model 1 
is applied to this channel. This channel model represents a 
nonlinear time-varying channel with 

( )( 0,1,2)ia k i = varying with time .k  These time-varying 
coefficients are generated by convolving white Gaussian 
noise and a Butterworth filter response. The bandwidth of 
the Butterworth filter determines the relative bandwidth 
(fading rate) of the channel. A nominal 2 kHz channel 
with 2400 symbol/s sampling rate are assumed, and a 
second-order Butterworth filter having a 3 dB bandwidth 
of 0.5 Hz is used [10]. 

The parameters are set to the same values as those used 
in Channel Model 1. Fig. 5(a) shows the time-varying 
coefficients 

1( ), ( )oa k a k and
2 ( )a k drawn for a fading rate 

of 0.5 Hz. The DFRNEs are in training phase until 
k =2000 and then they are switched to tracking phase at 
k =2001. Unlike simulations for Channel Model 1, the 
DFRNEs still update their weight vectors during testing 
(tracking) phase in order to track fading characteristic of 
the channel. In Fig. 5(b), the channel tracking property is 
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evaluated in both training phase and decision-directed 
tracking phase at a SNR of 15 dB. As expected, the UKF 
provides faster channel tracking capability than the 
corresponding RTRL. This result verifies that the MSE 
value of the UKF is much lower than that of the RTRL for 
both training and tracking phases. 

 

 
 (a) Received Signals  

 
    (b) Outputs of RTRL      (c) Outputs of UKF. 

Figure 6. Eye diagrams for Channel Model 2 during tracking 
mode (SNR=15dB) 

 
Fig. 6 shows eye diagrams during decision-directed 

tracking mode for 32 10× symbols. The equalized 
outputs of the UKF have no spots near the decision 
boundary. In contrast, some of the RTRL’s equalized 
outputs are located in the decision boundary, which 
creates wrong a symbol detections. 
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IV. CONCLUSIONS 
 

We have presented recurrent neural equalizers with 
decision feedback trained with Kalman filter for channel 
equalization, and their performance shows that the 
derivative-free Kalman filter performed better than the real-
time recurrent learning (RTRL) in terms of convergence 
rate, BER performance, and tracking capability. In regard 
of convergence rate, the derivative-free Kalman filter is 
superior to the RTRL. This means that the fast convergence 
rate of the derivative-free Kalman filter (needs) requires 

less training symbols and leads to better BER performance 
than the RTRL technique. This fast convergence rate may 
be suitable for high-rate channel equalization. In terms of 
channel tracking capability compared with the RTRL, the 
derivative-free Kalman filter training algorithm has shown 
rapid tracking mode. In short, The derivative-free Kalman 
filter is more suitable for high speed communication 
environments than RTRL. 
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