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Use of Training Data to Estimate the Smoothing Parameter for
Bayesian Image Reconstruction
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ABSTRACT : We consider the problem of determining smoothing parameters of Gibbs priors for
Bayesian methods used in the medical imaging application of emission tomographic reconstruction.
We address a simple smoothing prior (membrane) whose global hyperparameter (the smoothing
parameter) controls the bias/variance tradeoff of the solution. We base our maximum-likelihood
(ML) estimates of hyperparameters on observed training data, and argue the motivation for this
approach. Good results are obtained with a simple ML estimate of the smoothing parameter for the

membrane prior.

Introduction essential since noise is severe, and (2) given

the ill-posed nature of tomographic inversion
Bayesian methods utilizing Gibbs priors have . o

and the poor quality of projection data, a
proven useful for problems in image restoration o N

regularization needed to stabilize
and reconstruction. [1,2] In our own application . o .

maximum-likelihood (ML) solutions may be
to medical image reconstruction [3-5] in ] ]

provided by MAP (maximum a posteriori)
emission computed tomography (ECT), the . .

estimates that can be formulated using
Bayes model is especially apt for two reasons: ] ] ]

Bayesian approaches that incorporate suitable
(1) Accurate statistical modelling, via the ] o o

prior models. In addition, the likelihood model
likelihood function, of the Poisson noise

may conveniently incorporate a system model
associated with gamma-ray projection data is
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needed to account for the physics of image
formation.  As in other domains, the prior
models in Bayesian ECT most often model
some notion of local smoothness or piecewise
smoothness via Markov random field (MRF)
models expressable as Gibbs energies. To date,
much of the appeal of Bayesian approaches in
ECT has been based on both modelling
considerations, and the encouraging quality of
results seen in many studies.

Computational costs have

Algorithms  that use

dampened
enthusiasm, however.
Bayesian approaches to compute MAP or other
image estimates in ECT are always iterative
and costly to compute, but the relentless
improvement in computing hardware has by
now made such computation practical A
second computational problem stems from the
fact that these algorithms contain free
parameters whose values affect the nature of
the solution. Most of these are easily dealt
with, but in Bayes approaches,
hyperparameters of the prior, ie. the few (one
or two) parameters that control the degree of
smoothing and nature of discontinuities, are

costly to compute in a principled way.

We now state the hyperparameter estimation
problem: Given a likelihood and prior model,
and given a realization of noisy projection data
from a patient, compute some optimal estimate
of the hyperparameters. The variety of
approaches used to attack this problem in ECT
methods and

include regularization

estimation-theoretic methods based on maximum
likelihood. [6,7] All of these methods are
characterized by severe computational cost, yet
this is the only principled way to attack the
problem as stated. The cost hinders not only
application to clinical studies, but also slows
down further

development of Bayesian

approaches and algorithms.

In this paper, we pursue a rather different

approach in  which (noiseless) training

exemplars are used in place of noisy projection

data for ML  hyperparameter estimation.
However, our motivation lies in the wuse of
training  set  approaches  for  algorithm

development.

Motivation for Traning Set Approach

Training exemplars have been used in a

variety of problems for MRF  parameter

estimation, [8] The basic notion is simple: Given
a known, noiseless training object denoted by a

vector  f, hyperparameters A, and a prior

probability model Pr( f| A ), compute the ML

estimate 4 = argmax ,1[ Pr(f1 )] and use

>

A in subsequent reconstructions. (Note that

here, f
field modelled by the prior.) The ML problem

is a single realization of a random

tends to be robust since there are only one or

two hyperparameters while the vector f may

have thousands of components.
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Two natural questions are: 1. What constitutes
a proper training set, and how representative is it?
Unlike the case in computer vision, "scenes" in
medical imaging are quite stereotypical. One brain
scan acquired under a very specific medical
protocol looks quite similar to others acquired
under the same protocol. Researchers utilize this
fact to construct elaborate hardware and software
"phantoms” that mimic, to varying degrees, the
typical  distribution of radionuclide within the
relevant patient anatomy. Image formation from
the phantom or set of phantoms is then simulated
or physically acquired, and

quality to the

comparison  of
reconstructed  image known
phantom(s) then serves as a test of the
reconstruction. The verisimilitude of the phantom
in terms of anatomy and radionuclide distribution
tums out to be important for a variety of
applications. We have explored the use of
autoradiography as a source of realistic phantoms
[9] and we include such phantoms along with

others, as shown in Fig. 1, in this paper.

To develop Bayes approaches, the researcher
can thus use a phantom itself as a training set
to ascertain hyperparameters that otherwise would

be found by laborious empirical search. Of

course, the value A will not be the same as
that found by estimation from noisy projection
data, since noise and blur can affect the value of
this estimate. However, the two values approach
each other in the limit of low noise and blur.
For our realistic experiments, our training-set
derived hyperparameters perform well even on

noisy data, as described later.

The ability to quickly estimate
hyperparameters from phantoms assumes greater
importance when it is realized that the
statistical character of medical objects in ECT
is rarely nonstationary, vast improvements can
occur if the object is modelled by
region-dependent hyperparameters for a given
prior model. Physically, the nonstationarity
arises because tissues in different anatomical
regions take up radiopharmaceutical differently.
Thus knowledge of regions via coregistered
anatomy can lead to space variant priors that
model the “texture” in different regions
differently, or encourage boundary formation
along region boundaries. Estimation of region
dependent hyperparameters from projection data
alone requires a simultaneous segmentation
(into appropriate regions), reconstruction, and
parameter estimation - a difficult task
Phantoms can provide presegmented test sets in
which such estimation is fairly easy, and
algorithm development using space variant

priors can proceed.

A third motivation is that results on a
phantom may indeed be generalized in several
ways.  Hyperparameters calculated for a
phantom may be easily related to an intensity-
scaled or magnified version of the phantom,
and this enables one to quickly scale
hyperparameter values with regard to count
level and patient size, two parameters of

importance in phantom studies.
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Likelihood and Prior Models

In ECT, the object to be reconstructed is L,
identified as the mean of a Poisson gamma-ray

emission process from pixel (7, 7), tadiates

gamma rays and creates detector counts £ ;5 for

a detector positioned at orientation @ and
coordinate #. A system matrix F, that accounts
for the projection geometry and various physics

effects, relates the mean of the detector counts
E w to Ji via
£w= Z]Htﬁ,z‘jfz‘j- (1)
Though the methods here apply to any form
of prior, we consider in this work the
well-known membrane prior which has been
one of the most popular priors in the emission
tomography problem. We use the familiar
Gibbs  distribution to model the prior

distribution:
Pr(F=/)=— expl =B, /)],
@)
where f is a 2-D random field realization

for the with F  the

associated random field, and {\bf L,)1} are the

source intensity,

random field. If we use ¢/ to index the 2-D
lattice sites, then F i# 18 a random variable

whose realization is J i. Note that f Z-j20 is

a real nonegative number whose value

corresponds to a mean emission rate. For our

case, the phantom f is known. Also, Z is

a normalization factor (partition function) to be

discussed below, A is the hyperparameter (the

smoothing parameter), and E p( f) is the
prior energy. The definition of the prior energy

is given by

Ex(N=2{fG+FiGD}

where, f v and f 5 are the first order
derivatives along the vertical and the horizontal

directions, respectively, and are defined here as

fu(i,f):fz+1,j_fi,i
fh(i,f):fz,j+1_fi.i-

With the energy defined as in (3), we may

express the partition functions as

2= [ exp[=AEA SID)dS.

)

The integration limits in (4) follows from

the fact that Jf 4 18 a real, nonnegative

number.

Caclulating the Smoothing Parameter
via Maximum Likelihood

Given the known phantom data f, we may
use a maximum-likelihood (ML) approach to

estimate hyperparameters. For the mem brane

prior, the ML solution 2 becomes:

2= argmin,{ — log Pr( F= f|A)}
= argmin,{AE( £;4) + log Z(2)}

)
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The difficulty in (5) is the evaluation of
Z(A). Despite the inconvenient limits of

integration, the evaluation of Z(A) is possible
in this case and makes use of a mathematical

substitution trick [10]:
20 = | exp[ =B S0

= f:exD[*A{(fi+1,;‘*fi,;‘)2+(fi,;‘+1*fi,;‘)2}]df

Iz

=1 f[7Z,{(f’ﬁl,/‘7f’i,;‘)2+(f/i,;'+l7f/i”‘)2}]df'

_N
=4 %C, (©)
where f =V Af, N is the number of

object pixels, and (C is some constant
independent of A. Substituting (6) into (5),

using (3) and dropping terms independent of

A, we get
A= argminA{AEP( f)— % logﬂ}
N
whose solution is
1=K
2E5( 1)
€]

the correct ML solution for the membrane
prior. Note that it is more correct to set N
equal to the number of pixels of the object

proper, not the zero-valued background pixels.

The derivation of (8) assumed a range of

(0,0) for f;. For the range (— oo, + o),
the prior model becomes a member of the
class of autonormal models; the solution for
the hyperparameters for this class was pointed
out in [11]. It turns out that the approach

above may also be wused for the -case

(—o0,+ ), and the solution for 7 is
again given by (8). For a general range
(a, b), the closed form solution in (8) does

not work ( C becomes dependent on A) and
approximations are needed.

Numerical Studies

In order to validate our expressions for ML
parameter estimates, we conducted “closed-loop”
numerical experiments in which images were
created by Gibbs sampling from each of the
prior probabilities with hyperparamters known.
Our estimators were applied to sets of such
images, and the sample bias and variance of our
estimates were computed. For a phantom that is
not necessarily consistent with the underlying
prior model, we must resort to evaluating some

performance metric, in  our case the root

mean-squared error (RMSE) as a function of A,

to show that the optimal estimates yield good
reconstructions. Here RMSE (1) is defined as

RMSE(D) = & 2 70— 1,)"
®)
where f(A) is a reconstruction of f

obtained wusing the value A. For our
application, the reconstruction itself was a

Bayesian MAP procedure as described in [4].

Table 1. Percent bias and standard deviation of

2
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2 bias % std %
0.005 16.62 2.01
0.010 8.01 3.26
0.050 571 2.30
0.100 4.49 1.58
0.500 6.01 2.69

For our closed-loop experiments, we

generated 10 Gibbs samples for each of 5
values A, and computed the 50 ML estimates

according to (8). Fach sample was a 64x64
image with 32 discrete grey levels. The results,
summarized in Table 1, show a small positive
relative bias and small relative standard
deviation (expressed as a percentage of the

known true value for A).

In order to test the performance on phantom

data (our training set) of our optimal 2 for
the membrane prior, we created 40 noisy
projection data sets of the phantom in Fig.
1(a). The count level, 732K counts, was
equivalent to that of a typical SPECT
(single-photon ECT) brain scan on a per-pixel
basis. For each  projection data  set,

reconstructions using the membrane prior were
performed for nine values A= Agx2™ | where
n=0, +1,+2,43,+4 and A;=20.02, thus
yielding 360 reconstructions. Fig. 2(a) shows a
plot of RMSE vs. A averaged over the 40

noisy projection data sets generated from this

phantom, and indicates the position (arrow

labeled ML) of the value for 7 obtained by
applying (8) on the phantom.

One may also compute an MPL (maximum
pseudo-likelihood) estimate [9] for the membrane
prior for comparison puroses. The value of the
MPL estimate is also displayed (arrow labeled
MPL). As seen, the derived value is not far

from the one that minimizes RMSE.

i) {dy

Fig. 1 Phantoms used in the simulations. (a)

Phantom  A:  Primate  autoradiograph
phantom obtained with the blood flow
agent (*™Tc-ECD); (b)c) Phantoms B
and C: Primate autoradiograph phantoms
obtained with the benzodiazepine
neuroreceptor agent lomazenil ('ZI); (d)

Phantom D: Hoffman brain phantom.

We have observed empirically that for
reconstruction problems with noise levels
characteristic of ECT, an ML or MPL estimate

for hyperparameters almost always falls within

- 180 -



Use of Training Data to Estimate the Smoothing Parameter for Bayesian Image Reconstruction

a factor of 2 or 3 of A™, the

hyperparameter  corresponding to  minimum

RMSE, and that the RMSE 2 is always

within a few percent of RMSE( A ™®). Fig. 2
illustrates a typical case.

Table 2 summarizes trials used to explore
results

anecdotal regarding  issues  of

generalization (i.e. “similar” phantoms yield
approximately equal  2's). For a given

phantom from Fig. 1, each row in Table 2

displays the value 2 ML, the ML estimate

from training data, 2 rusk . the value of 7

that minimizes the RMSE of a reconstruction

with 732K  counts, and also 2 MPL> 4
maximum pseudolikelihood estimator [9] listed
for comparison. All phantoms were scaled to
be consistent with a 732K count level
Phantom A is a distribution of radionuclide
density obtained from sagittal autoradiograph
primate phantom [9]. Phantoms B and C are
very similar transverse slice autoradiographs,
from a single primate, spaced at 5 mm, and so
we expect the parameter values to be similar
for each, and they are. By contrast, we expect
the Hoffman brain phantom D, which consists
of flat regions with sharp edges, to have fairly

different values. This is indeed the case.

Table 2 Hyperparameter estimation using MPL

and ML compared with 2 RMSE -

Phantoms A vpL AL A RuisE
A 0.033 0.018 0.020
B 0.039 0.027 0.022
C 0.031 0.022 0.025
D 0.0016 0.0014 0.0016

Summary and Conclusion

We have considered hyperparameter
estimation using phantom training data for our
medical imaging application, and pointed out
several motivations where this approach might
be used in place of the difficult problem of
hyperparameter estimation from noisy observed

projection data. We derived expressions for

the ML estimate of A for the membrane prior.

Our initial results indicate that the
hyperparameters from training data perform

well with regard to bias/variance/rms metrics.
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