• Title/Summary/Keyword: Training method

Search Result 5,558, Processing Time 0.037 seconds

An Exploratory Study of Hospice Care to Patients with Advanced Cancer (암환자를 위한 호스피스 케어에 관한 탐색적 연구)

  • Park, Hye-Ja
    • The Korean Nurse
    • /
    • v.28 no.3
    • /
    • pp.52-67
    • /
    • 1989
  • True nursing care means total nursing care which includes physical, emotional and spiritual care. The modern nursing care has tendency to focus toward physical care and needs attention toward emotional and spiritual care. The total nursing care is mandatory for patients with terminal cancer and for this purpose, hospice care became emerged. Hospice case originated from the place or shelter for the travellers to Jerusalem in medieval stage. However, the meaning of modem hospice care became changed to total nursing care for dying patients. Modern hospice care has been developed in England, and spreaded to U.S.A. and Canada for the patients with terminal cancer. Nowaday, it became a part of nursing care and the concept of hospice care extended to the palliative care of the cancer patients. Recently, it was introduced to Korea and received attention as model of total nursing care. This study was attempted to assess the efficacy of hospice care. The purpose of this study was to prove a difference in terms of physical, emotional a d spiritual aspect between the group who received hospice care and who didn't receive hospice care. The subject for this study were 113 patients with advanced cancer who were hospitalized in the S different hospitals. 67 patients received hospice care in 4 different hospitals, and 46 patients didn't receive hospice care in another 4 different hospitals. The method of this study was the questionaire which was made through the descriptive study. The descriptive study was made by individual contact with 102 patients cf advanced cancer for 9 months period. The measurement tool for questionaire was made by author through the descriptive study, and included the personal religious orientation obtained from chung(originated R. Fleck) and 5 emotional stages before dying from Kubler Ross. The content ol questionaire consisted in 67 items which included 11 for general characteristics, 10 for related condition with cancer, 13 for wishes far physical therapy, 13 for emotional reactions and 20 for personal religious orientation. Data for this study was collected from Aug. 25 to Oct. 6 by author and 4 other nurse's who received education and training by author for the collection of data. The collected data were ana lysed using descriptive statistics, $X^2-test$, t-test and pearson correlation coefficient. Results of the study were as follows: "H.C Group" means the group of patient with cancer who received hospice care. "Non H.C Group" means the group of patient with cancer who did not receive hospice care. 1. There is a difference between H.C Group and Non H.C Group in term of the number of physical symptoms, subjective degree of pain sensation and pain control, subjective beliefs in physical cure, emotional reaction, help of present emotional and spiritual care from other personal, needs of emotional and spiritual care in future, selection of treatment method by patients and personal religious orientation. 2. The comparison of H.C Group and Non H.C Group 1) There is no difference in wishes for physical therapy between two groups(p=.522). Among Non H.C Group, a group, who didn't receive traditional therapy and herb medicine was higher than a group who received these in degree of belief that the traditional therapy and herb medicine can cure their disease, and this result was higher in comparison to H.C Group(p=.025, p=.050). 2) Non H.C Group was higher than H.C Group in degree of emotional reaction(p=.050). H.C Group was higher than Non H.C Group in denial and acceptant stage among 5 different emotional stages before dying described by Kubler Ross, especially among the patient who had disease more than 13 months(p=.0069, p=.0198). 3) Non H.C Group was higher than H. C Group in demanding more emotional and spiritual care to doctor, nurse, family and pastor(p=. 010). 4) Non H.C Group was higher than H.C Group in demanding more emotional and spiritual care to each individual of doctor, nurse and family (p=.0110, p=.0029, P=. 0053). 5) H.C Group was higher th2.n Non H.C Group in degree of intrinsic behavior orientation and intrinsic belief orientation of personal religious orientation(p=.034, p=.026). 6) In H.C Group and Non H.C Group, the degree of emotional demanding of christians was significantly higher than non christians to doctor, nurse, family and pastor(p=. 000, p=.035). 7) In H.C Group there were significant positive correlations as following; (1) Between the degree of emotional demandings to doctor, nurse, family & pastor and: the degree of intrinsic behavior orientation in personal religious orientation(r=. 5512, p=.000). (2) Between the degree of emotional demandings to doctor, nurse. family & pastor and the degree of intrinsic belief orientation in personal religious orientation(r=.4795, p=.000). (3) Between the degree of intrinsic behavior orientation and the degree of intrinsic: belief orientation in personal religious orientation(r=.8986, p=.000). (4) Between the degree of extrinsic religious orientation and the degree of consensus religious orientation in personal religious orientation (r=. 2640, p=.015). In H.C. Group there were significant negative correlations as following; (1) Between the degree of intrinsic behavior orientation and extrinsic religious orientation in personal religious orientation (r=-.4218, p=.000). (2) Between the degree or intrinsic behavior orientation and consensus religious orientation in personal religious orientation(r=-. 4597, p=.000). (3) Between the degree of intrinsic belief orientations and the degree of extrinsic religious orientation in personal religious orientation(r=-.4388, p=.000). (4) Between the degree of intrinsic belief orientation and the degree of consensus religious orientation in personal religious orientation(r=-. 5424, p=.000). 8) In Non H.C Group there were significant positive correlation as following; (1) Between the degree of emotional demandings to doctor, nurse, family & pastor and the degree of intrinsic behavior orientation in personal religious orientation(r= .3566, p=.007). (2) Between the degree of emotional demandings to doctor, nurse, family & pastor and the degree of intrinsic belief orientation in personal religious orientation(r=.3430, p=.010). (3) Between the degree of intrinsic behavior orientation and the degree of intrinsic belief orientation in personal religious orientation(r=.9723, p=.000). In Non H.C Group there were significant negative correlation as following; (1) Between the degree of emotional demandings to doctor, nurse, family & pastor and the degree of extrinsic religious orientation in personal religious orientation(r= -.2862, p=.027). (2) Between the degree of intrinsic behavior orientation and the degree of extrinsic religious orientation in personal religious orientation(r=-. 5083, p=.000). (3) Between the degree of intrinsic belief orientation and the degree of extrinsic religious orientation in personal religious orientation(r=-. 5013, p=.000). In conclusion above datas suggest that hospice care provide effective total nursing care for the patients with terminal cancer, and hospice care is mandatory in all medical institutions.

  • PDF

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

The Implementation of a HACCP System through u-HACCP Application and the Verification of Microbial Quality Improvement in a Small Size Restaurant (소규모 외식업체용 IP-USN을 활용한 HACCP 시스템 적용 및 유효성 검증)

  • Lim, Tae-Hyeon;Choi, Jung-Hwa;Kang, Young-Jae;Kwak, Tong-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.464-477
    • /
    • 2013
  • There is a great need to develop a training program proven to change behavior and improve knowledge. The purpose of this study was to evaluate employee hygiene knowledge, hygiene practice, and cleanliness, before and after HACCP system implementation at one small-size restaurant. The efficiency of the system was analyzed using time-temperature control after implementation of u-HACCP$^{(R)}$. The employee hygiene knowledge and practices showed a significant improvement (p<0.05) after HACCP system implementation. In non-heating processes, such as seasoned lettuce, controlling the sanitation of the cooking facility and the chlorination of raw ingredients were identified as the significant CCP. Sanitizing was an important CCP because total bacteria were reduced 2~4 log CFU/g after implementation of HACCP. In bean sprouts, microbial levels decreased from 4.20 logCFU/g to 3.26 logCFU/g. There were significant correlations between hygiene knowledge, practice, and microbiological contamination. First, personnel hygiene had a significant correlation with 'total food hygiene knowledge' scores (p<0.05). Second, total food hygiene practice scores had a significant correlation (p<0.05) with improved microbiological qualities of lettuce salad. Third, concerning the assessment of microbiological quality after 1 month, there were significant (p<0.05) improvements in times of heating, and the washing and division process. On the other hand, after 2 months, microbiological was maintained, although only two categories (division process and kitchen floor) were improved. This study also investigated time-temperature control by using ubiquitous sensor networks (USN) consisting of an ubi reader (CCP thermometer), an ubi manager (tablet PC), and application software (HACCP monitoring system). The result of the temperature control before and after USN showed better thermal management (accuracy, efficiency, consistency of time control). Based on the results, strict time-temperature control could be an effective method to prevent foodborne illness.

Evaluation of the Usefulness of Restricted Respiratory Period at the Time of Radiotherapy for Non-Small Cell Lung Cancer Patient (비소세포성 폐암 환자의 방사선 치료 시 제한 호흡 주기의 유용성 평가)

  • Park, So-Yeon;Ahn, Jong-Ho;Suh, Jung-Min;Kim, Yung-Il;Kim, Jin-Man;Choi, Byung-Ki;Pyo, Hong-Ryul;Song, Ki-Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2012
  • Purpose: It is essential to minimize the movement of tumor due to respiratory movement at the time of respiration controlled radiotherapy of non-small cell lung cancer patient. Accordingly, this Study aims to evaluate the usefulness of restricted respiratory period by comparing and analyzing the treatment plans that apply free and restricted respiration period respectively. Materials and Methods: After having conducted training on 9 non-small cell lung cancer patients (tumor n=10) from April to December 2011 by using 'signal monitored-breathing (guided- breathing)' method for the 'free respiratory period' measured on the basis of the regular respiratory period of the patents and 'restricted respiratory period' that was intentionally reduced, total of 10 CT images for each of the respiration phases were acquired by carrying out 4D CT for treatment planning purpose by using RPM and 4-dimensional computed tomography simulator. Visual gross tumor volume (GTV) and internal target volume (ITV) that each of the observer 1 and observer 2 has set were measured and compared on the CT image of each respiratory interval. Moreover, the amplitude of movement of tumor was measured by measuring the center of mass (COM) at the phase of 0% which is the end-inspiration (EI) and at the phase of 50% which is the end-exhalation (EE). In addition, both observers established treatment plan that applied the 2 respiratory periods, and mean dose to normal lung (MDTNL) was compared and analyzed through dose-volume histogram (DVH). Moreover, normal tissue complication probability (NTCP) of the normal lung volume was compared by using dose-volume histogram analysis program (DVH analyzer v.1) and statistical analysis was performed in order to carry out quantitative evaluation of the measured data. Results: As the result of the analysis of the treatment plan that applied the 'restricted respiratory period' of the observer 1 and observer 2, there was reduction rate of 38.75% in the 3-dimensional direction movement of the tumor in comparison to the 'free respiratory period' in the case of the observer 1, while there reduction rate was 41.10% in the case of the observer 2. The results of measurement and comparison of the volumes, GTV and ITV, there was reduction rate of $14.96{\pm}9.44%$ for observer 1 and $19.86{\pm}10.62%$ for observer 2 in the case of GTV, while there was reduction rate of $8.91{\pm}5.91%$ for observer 1 and $15.52{\pm}9.01%$ for observer 2 in the case of ITV. The results of analysis and comparison of MDTNL and NTCP illustrated the reduction rate of MDTNL $3.98{\pm}5.62%$ for observer 1 and $7.62{\pm}10.29%$ for observer 2 in the case of MDTNL, while there was reduction rate of $21.70{\pm}28.27%$ for observer 1 and $37.83{\pm}49.93%$ for observer 2 in the case of NTCP. In addition, the results of analysis of correlation between the resultant values of the 2 observers, while there was significant difference between the observers for the 'free respiratory period', there was no significantly different reduction rates between the observers for 'restricted respiratory period. Conclusion: It was possible to verify the usefulness and appropriateness of 'restricted respiratory period' at the time of respiration controlled radiotherapy on non-small cell lung cancer patient as the treatment plan that applied 'restricted respiratory period' illustrated relative reduction in the evaluation factors in comparison to the 'free respiratory period.

  • PDF

Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating (유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용)

  • Ahn, Hyunchul
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.161-177
    • /
    • 2014
  • Corporate credit rating assessment consists of complicated processes in which various factors describing a company are taken into consideration. Such assessment is known to be very expensive since domain experts should be employed to assess the ratings. As a result, the data-driven corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has received considerable attention from researchers and practitioners. In particular, statistical methods such as multiple discriminant analysis (MDA) and multinomial logistic regression analysis (MLOGIT), and AI methods including case-based reasoning (CBR), artificial neural network (ANN), and multiclass support vector machine (MSVM) have been applied to corporate credit rating.2) Among them, MSVM has recently become popular because of its robustness and high prediction accuracy. In this study, we propose a novel optimized MSVM model, and appy it to corporate credit rating prediction in order to enhance the accuracy. Our model, named 'GAMSVM (Genetic Algorithm-optimized Multiclass Support Vector Machine),' is designed to simultaneously optimize the kernel parameters and the feature subset selection. Prior studies like Lorena and de Carvalho (2008), and Chatterjee (2013) show that proper kernel parameters may improve the performance of MSVMs. Also, the results from the studies such as Shieh and Yang (2008) and Chatterjee (2013) imply that appropriate feature selection may lead to higher prediction accuracy. Based on these prior studies, we propose to apply GAMSVM to corporate credit rating prediction. As a tool for optimizing the kernel parameters and the feature subset selection, we suggest genetic algorithm (GA). GA is known as an efficient and effective search method that attempts to simulate the biological evolution phenomenon. By applying genetic operations such as selection, crossover, and mutation, it is designed to gradually improve the search results. Especially, mutation operator prevents GA from falling into the local optima, thus we can find the globally optimal or near-optimal solution using it. GA has popularly been applied to search optimal parameters or feature subset selections of AI techniques including MSVM. With these reasons, we also adopt GA as an optimization tool. To empirically validate the usefulness of GAMSVM, we applied it to a real-world case of credit rating in Korea. Our application is in bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. The experimental dataset was collected from a large credit rating company in South Korea. It contained 39 financial ratios of 1,295 companies in the manufacturing industry, and their credit ratings. Using various statistical methods including the one-way ANOVA and the stepwise MDA, we selected 14 financial ratios as the candidate independent variables. The dependent variable, i.e. credit rating, was labeled as four classes: 1(A1); 2(A2); 3(A3); 4(B and C). 80 percent of total data for each class was used for training, and remaining 20 percent was used for validation. And, to overcome small sample size, we applied five-fold cross validation to our dataset. In order to examine the competitiveness of the proposed model, we also experimented several comparative models including MDA, MLOGIT, CBR, ANN and MSVM. In case of MSVM, we adopted One-Against-One (OAO) and DAGSVM (Directed Acyclic Graph SVM) approaches because they are known to be the most accurate approaches among various MSVM approaches. GAMSVM was implemented using LIBSVM-an open-source software, and Evolver 5.5-a commercial software enables GA. Other comparative models were experimented using various statistical and AI packages such as SPSS for Windows, Neuroshell, and Microsoft Excel VBA (Visual Basic for Applications). Experimental results showed that the proposed model-GAMSVM-outperformed all the competitive models. In addition, the model was found to use less independent variables, but to show higher accuracy. In our experiments, five variables such as X7 (total debt), X9 (sales per employee), X13 (years after founded), X15 (accumulated earning to total asset), and X39 (the index related to the cash flows from operating activity) were found to be the most important factors in predicting the corporate credit ratings. However, the values of the finally selected kernel parameters were found to be almost same among the data subsets. To examine whether the predictive performance of GAMSVM was significantly greater than those of other models, we used the McNemar test. As a result, we found that GAMSVM was better than MDA, MLOGIT, CBR, and ANN at the 1% significance level, and better than OAO and DAGSVM at the 5% significance level.

The Determination of Trust in Franchisor-Franchisee Relationships in China (중국 프랜차이즈 시스템에서의 본부와 가맹점간 신뢰의 영향요인)

  • Shin, Geon-Cheol;Ma, Yaokun
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.65-88
    • /
    • 2008
  • Since the implementation of economic reforms in 1978, the Chinese economy grows rapidly at an average annul growth rate of 9% over the post two decades. Franchising has been widely recognized as an important source of entrepreneurial activity. Trust is important in that it facilitates relational exchanges by permits partners to transcend short-run inequities or risks to concentrate on long-term profits or gains. In the relationship between the franchisors and franchisees, trust has been described as an important source of competitive advantage. However, little research has been done on the factors affecting trust in Chinese franchisor-franchisee relationships. The purpose of this study is to investigate what factors affect the trust in the franchise system in China, and to provide guidelines and insights to franchisors which enter Chinese market. In this study, according to Morgan and Hunt (1994), trust is defined as the extending when one party has confidence in an exchange partner's reliability and integrity. We offered a conceptual model of the empirical study. The model shows that the factors affecting the trust include franchisor's supports, communication, satisfaction with previous outcome and conflict. We also suggested the franchisor's supports and communication like to enhance the franchisee's satisfaction with previous outcome, and the franchisor's supports, communication and he franchisee's satisfaction with previous outcome tend to decrease conflict. Before the formal study, a pretest involving exploratory interviews with owners from three franchisees was conducted to make sure the questionnaire was relevant and clear to the respondents. The data were collected using trained interviewers to carry out personal interviews with the aid of an unidentified, muti-page, structured questionnaire. The respondents comprised of owners, managers, and owner managers of franchisee-owned food service franchises located in Beijing, China. Even though a total of 256 potential franchises were initially contacted, the finally usable sample consisted of 125 respondents. As expected, the sampling method was successful in soliciting respondents with waried personal and firm characteristics. Self-administrated questionnaires were used for all measures. And established scales were used to measure the latent constructs in this study. The measures tapped the franchisees' perceptions of the relationship with the referent franchisor. Five-point Likert-type scales ranging from "strongly disagree" (=1) to "strongly agree" (=7) were used throughout the constructs (trust, eight items; support, five items; communication, four items; satisfaction, six items; conflict, three items). The reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than.80. The proposed measurement model was estimated using SPSS 12.0 and AMOS 5.0 analysis package. We conducted A series of exploratory factor analyses and confirmatory factor analyses to assess the convergent validity, discriminant validity, and reliability. The results indicate reasonable overall fits between the model and the observed data. The overall fit of measurement model were $X^2$= 159.699, p=0.004, d.f. = 116, GFI =.879, NFI =.898, CFI =.969, IFI =.970, TLI =.959, RMR =.058. The results demonstrated that the data reasonably fitted the model. We also examined construct reliability and reliability and average variance extracted (AVE). The construct reliability of each construct was greater than.80 and the AVE of each construct was greater than.50. According to the analysis of Structure Equation Modeling (SEM), the results of path model indicated an adequate fit of the model: $X^2$= 142.126, p = 0.044, d.f. = 115, GFI =.892, NFI =.909, CFI =.981, IFI =.981, TLI =.974, RMR =.057. As hypothesized, the results showed that it is strategically important to establish trust in a franchise system, and the franchisor's supports, communication and satisfaction with previous outcome tend to reinforce franchisee's trust. The results also showed trust seems to decrease as the experience of conflict episodes increases. And we also noticed that franchisor's supports and communication tend to enhance the franchisee's satisfaction with previous outcome, and communication tend to decrease conflict. If the trust between the franchisor and franchisee can be established in a franchise system, franchising offers many benefits and reduces many costs. To manage a mutual trust of relationship with their franchisees, franchisor's should provide support effectively to their franchisees. Effective assistant services have direct effect on franchisees' satisfaction with previous outcome and trust in franchisor. Especially, franchise sales process, orientation, and training in the start-up period are key elements for success of the franchise system. Franchisor's support is an accumulated separate satisfaction evaluation with different kind of service provided by the franchisor. And providing support definitely can improve the trustworthy image of the franchisor. In the franchise system, conflicts of interests and exertions of different power sources are very common. The experience of conflict episodes seems to negatively relate to trust. Therefore, it is important to reduce the negative side of the relationship conflicts. Communication actually plays a broader role in reducing conflict and establish mutual trust in franchisor-franchisee relationship. And effective communication between franchisors and franchisees can improve franchisees' satisfaction toward the franchise system. As the diversification of Chinese markets, both franchisors and franchisees must keep the relevant, timely, and reliable communication. And it is very important to improve the quality of communication. Satisfaction with precious outcomes seems to positively relate to trust. Franchisors and franchisees that are highly satisfied with the previous outcomes that flow from their relationship will perceive their partner as advancing their goal achievement. Therefore, it is necessary for both franchisor and their franchisees to make the welfare of partner with effort. Little literature has focused on what factors affect the trust between franchisors and their franchisees in China. This study developed the hypotheses regarding the factors affecting trust in the transaction relationship. The results of data analysis supported the hypotheses strongly. There are certain limitations in this study. First, we may point out that some other factors missed in this study could be significantly important. Second, the context of this study, food service industry, limits its potential generalizability for all franchise systems. More studies in different categories of franchise system are needed to broaden its generalizability. Third, the model was tested empirically in a sample in Beijing, more empirical tests of the proposed model in other Chinese areas are needed. Finally, the analysis in this study was solely based on the perception of franchisees and the opinions of franchisors were not included.

  • PDF

Suggestion of Urban Regeneration Type Recommendation System Based on Local Characteristics Using Text Mining (텍스트 마이닝을 활용한 지역 특성 기반 도시재생 유형 추천 시스템 제안)

  • Kim, Ikjun;Lee, Junho;Kim, Hyomin;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.149-169
    • /
    • 2020
  • "The Urban Renewal New Deal project", one of the government's major national projects, is about developing underdeveloped areas by investing 50 trillion won in 100 locations on the first year and 500 over the next four years. This project is drawing keen attention from the media and local governments. However, the project model which fails to reflect the original characteristics of the area as it divides project area into five categories: "Our Neighborhood Restoration, Housing Maintenance Support Type, General Neighborhood Type, Central Urban Type, and Economic Base Type," According to keywords for successful urban regeneration in Korea, "resident participation," "regional specialization," "ministerial cooperation" and "public-private cooperation", when local governments propose urban regeneration projects to the government, they can see that it is most important to accurately understand the characteristics of the city and push ahead with the projects in a way that suits the characteristics of the city with the help of local residents and private companies. In addition, considering the gentrification problem, which is one of the side effects of urban regeneration projects, it is important to select and implement urban regeneration types suitable for the characteristics of the area. In order to supplement the limitations of the 'Urban Regeneration New Deal Project' methodology, this study aims to propose a system that recommends urban regeneration types suitable for urban regeneration sites by utilizing various machine learning algorithms, referring to the urban regeneration types of the '2025 Seoul Metropolitan Government Urban Regeneration Strategy Plan' promoted based on regional characteristics. There are four types of urban regeneration in Seoul: "Low-use Low-Level Development, Abandonment, Deteriorated Housing, and Specialization of Historical and Cultural Resources" (Shon and Park, 2017). In order to identify regional characteristics, approximately 100,000 text data were collected for 22 regions where the project was carried out for a total of four types of urban regeneration. Using the collected data, we drew key keywords for each region according to the type of urban regeneration and conducted topic modeling to explore whether there were differences between types. As a result, it was confirmed that a number of topics related to real estate and economy appeared in old residential areas, and in the case of declining and underdeveloped areas, topics reflecting the characteristics of areas where industrial activities were active in the past appeared. In the case of the historical and cultural resource area, since it is an area that contains traces of the past, many keywords related to the government appeared. Therefore, it was possible to confirm political topics and cultural topics resulting from various events. Finally, in the case of low-use and under-developed areas, many topics on real estate and accessibility are emerging, so accessibility is good. It mainly had the characteristics of a region where development is planned or is likely to be developed. Furthermore, a model was implemented that proposes urban regeneration types tailored to regional characteristics for regions other than Seoul. Machine learning technology was used to implement the model, and training data and test data were randomly extracted at an 8:2 ratio and used. In order to compare the performance between various models, the input variables are set in two ways: Count Vector and TF-IDF Vector, and as Classifier, there are 5 types of SVM (Support Vector Machine), Decision Tree, Random Forest, Logistic Regression, and Gradient Boosting. By applying it, performance comparison for a total of 10 models was conducted. The model with the highest performance was the Gradient Boosting method using TF-IDF Vector input data, and the accuracy was 97%. Therefore, the recommendation system proposed in this study is expected to recommend urban regeneration types based on the regional characteristics of new business sites in the process of carrying out urban regeneration projects."

A Methodology to Develop a Curriculum based on National Competency Standards - Focused on Methodology for Gap Analysis - (국가직무능력표준(NCS)에 근거한 조경분야 교육과정 개발 방법론 - 갭분석을 중심으로 -)

  • Byeon, Jae-Sang;Ahn, Seong-Ro;Shin, Sang-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.1
    • /
    • pp.40-53
    • /
    • 2015
  • To train the manpower to meet the requirements of the industrial field, the introduction of the National Qualification Frameworks(hereinafter referred to as NQF) was determined in 2001 by National Competency Standards(hereinafter referred to as NCS) centrally of the Office for Government Policy Coordination. Also, for landscape architecture in the construction field, the "NCS -Landscape Architecture" pilot was developed in 2008 to be test operated for 3 years starting in 2009. Especially, as the 'realization of a competence-based society, not by educational background' was adopted as one of the major government projects in the Park Geun-Hye government(inaugurated in 2013) the NCS system was constructed on a nationwide scale as a detailed method for practicing this. However, in the case of the NCS developed by the nation, the ideal job performing abilities are specified, therefore there are weaknesses of not being able to reflect the actual operational problem differences in the student level between universities, problems of securing equipment and professors, and problems in the number of current curricula. For soft landing to practical curriculum, the process of clearly analyzing the gap between the current curriculum and the NCS must be preceded. Gap analysis is the initial stage methodology to reorganize the existing curriculum into NCS based curriculum, and based on the ability unit elements and performance standards for each NCS ability unit, the discrepancy between the existing curriculum within the department or the level of coincidence used a Likert scale of 1 to 5 to fill in and analyze. Thus, the universities wishing to operate NCS in the future measuring the level of coincidence and the gap between the current university curriculum and NCS can secure the basic tool to verify the applicability of NCS and the effectiveness of further development and operation. The advantages of reorganizing the curriculum through gap analysis are, first, that the government financial support project can be connected to provide quantitative index of the NCS adoption rate for each qualitative department, and, second, an objective standard is provided on the insufficiency or sufficiency when reorganizing to NCS based curriculum. In other words, when introducing in the subdivisions of the relevant NCS, the insufficient ability units and the ability unit elements can be extracted, and the supplementary matters for each ability unit element per existing subject can be extracted at the same time. There is an advantage providing directions for detailed class program and basic subject opening. The Ministry of Education and the Ministry of Employment and Labor must gather people from the industry to actively develop and supply the NCS standard a practical level to systematically reflect the requirements of the industrial field the educational training and qualification, and the universities wishing to apply NCS must reorganize the curriculum connecting work and qualification based on NCS. To enable this, the universities must consider the relevant industrial prospect and the relation between the faculty resources within the university and the local industry to clearly select the NCS subdivision to be applied. Afterwards, gap analysis must be used for the NCS based curriculum reorganization to establish the direction of the reorganization more objectively and rationally in order to participate in the process evaluation type qualification system efficiently.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM (딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증)

  • Cha, Sungjae;Kang, Jungseok
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.1-32
    • /
    • 2018
  • In addition to stakeholders including managers, employees, creditors, and investors of bankrupt companies, corporate defaults have a ripple effect on the local and national economy. Before the Asian financial crisis, the Korean government only analyzed SMEs and tried to improve the forecasting power of a default prediction model, rather than developing various corporate default models. As a result, even large corporations called 'chaebol enterprises' become bankrupt. Even after that, the analysis of past corporate defaults has been focused on specific variables, and when the government restructured immediately after the global financial crisis, they only focused on certain main variables such as 'debt ratio'. A multifaceted study of corporate default prediction models is essential to ensure diverse interests, to avoid situations like the 'Lehman Brothers Case' of the global financial crisis, to avoid total collapse in a single moment. The key variables used in corporate defaults vary over time. This is confirmed by Beaver (1967, 1968) and Altman's (1968) analysis that Deakins'(1972) study shows that the major factors affecting corporate failure have changed. In Grice's (2001) study, the importance of predictive variables was also found through Zmijewski's (1984) and Ohlson's (1980) models. However, the studies that have been carried out in the past use static models. Most of them do not consider the changes that occur in the course of time. Therefore, in order to construct consistent prediction models, it is necessary to compensate the time-dependent bias by means of a time series analysis algorithm reflecting dynamic change. Based on the global financial crisis, which has had a significant impact on Korea, this study is conducted using 10 years of annual corporate data from 2000 to 2009. Data are divided into training data, validation data, and test data respectively, and are divided into 7, 2, and 1 years respectively. In order to construct a consistent bankruptcy model in the flow of time change, we first train a time series deep learning algorithm model using the data before the financial crisis (2000~2006). The parameter tuning of the existing model and the deep learning time series algorithm is conducted with validation data including the financial crisis period (2007~2008). As a result, we construct a model that shows similar pattern to the results of the learning data and shows excellent prediction power. After that, each bankruptcy prediction model is restructured by integrating the learning data and validation data again (2000 ~ 2008), applying the optimal parameters as in the previous validation. Finally, each corporate default prediction model is evaluated and compared using test data (2009) based on the trained models over nine years. Then, the usefulness of the corporate default prediction model based on the deep learning time series algorithm is proved. In addition, by adding the Lasso regression analysis to the existing methods (multiple discriminant analysis, logit model) which select the variables, it is proved that the deep learning time series algorithm model based on the three bundles of variables is useful for robust corporate default prediction. The definition of bankruptcy used is the same as that of Lee (2015). Independent variables include financial information such as financial ratios used in previous studies. Multivariate discriminant analysis, logit model, and Lasso regression model are used to select the optimal variable group. The influence of the Multivariate discriminant analysis model proposed by Altman (1968), the Logit model proposed by Ohlson (1980), the non-time series machine learning algorithms, and the deep learning time series algorithms are compared. In the case of corporate data, there are limitations of 'nonlinear variables', 'multi-collinearity' of variables, and 'lack of data'. While the logit model is nonlinear, the Lasso regression model solves the multi-collinearity problem, and the deep learning time series algorithm using the variable data generation method complements the lack of data. Big Data Technology, a leading technology in the future, is moving from simple human analysis, to automated AI analysis, and finally towards future intertwined AI applications. Although the study of the corporate default prediction model using the time series algorithm is still in its early stages, deep learning algorithm is much faster than regression analysis at corporate default prediction modeling. Also, it is more effective on prediction power. Through the Fourth Industrial Revolution, the current government and other overseas governments are working hard to integrate the system in everyday life of their nation and society. Yet the field of deep learning time series research for the financial industry is still insufficient. This is an initial study on deep learning time series algorithm analysis of corporate defaults. Therefore it is hoped that it will be used as a comparative analysis data for non-specialists who start a study combining financial data and deep learning time series algorithm.