• 제목/요약/키워드: Training Face Image

검색결과 125건 처리시간 0.022초

융의 심리학적 이미지 해석을 통한 인테리어 테라피 사례연구 - 미국 Bravo TV 방송 프로그램에 나타난 주거공간 중심으로 - (A Study of Interior Therapy based on Psychological Image Interpretation by Carl Jung - Focusing on Residential Spaces of in the US -)

  • 장미정
    • 한국실내디자인학회논문집
    • /
    • 제27권2호
    • /
    • pp.128-142
    • /
    • 2018
  • This study is to analyze a case of US Bravo TV program, Interior therapy with Jeff Lewies, based on analytical psychology by Carl Jung, to understand characteristics of interior therapy in psycho-therapeutic viewpoint. Case study among descriptive observation approaches was chosen as a study method while the study range was set as 8 episodes in 2012 and 8 episodes in 2013. As a result of study, future application of therapy to domestic interior design was suggested as 3 types the following; a) Paranoid and storage disorder type that pursues space design by horizontal elements with a sense of comfortable, starting from throwing things away, and suggests whiteness based on desire to be cleaned; b) Individual taste type starting from give and take between members and recognizing one another. e.g., aligning the U-shaped sofa and giving a sense of comfort by using the achromatic colors; and c) Workroom type involved with the face-to-face type of space design and arrangement of mild grey and brown colors. Finally, this study has its significance in suggesting the direction for new occupational clusters in the field of domestic space design (interior, architecture, environment design, etc.), which could be utilized as a basic data for training program development to foster interior therapy professionals.

B2B를 이용한 유통업체의 의류상품구매 사례연구 (A Case Study of Retail Fashion Buying through B2B)

  • 윤혜영;고은주
    • 대한가정학회지
    • /
    • 제42권2호
    • /
    • pp.117-131
    • /
    • 2004
  • The purpose of this study was to examine the current situation of B2B fashion buying behavior (i.e., buying motives, product characteristics, buying processes), and to analyze the buying performance, buying problems and buying strategies. In depth, face-to-face interviews with structured questionnaire were conducted with three buyers and three vendors related to 18 buying items of C Company. Results of this research were as following:1. Buying motives were mainly reduction of buying costs, improvement of profits, and increased efficiency in buying process for retail buyers, while the selling motive was mainly improvement of market share for suppliers. Suitable items for B2B buying were basic items or bulk items. The B2B buying process included the following steps: selecting auction items, target prices, and suppliers ; setting the product specification and bidding niles; training the suppliers for preparing the auction; proceeding the auction by internet. 2. The perceived B2B benefits for buyers were profit improvement and cost reduction while those for suppliers were time saving and market share improvement. The indicated buying problems were as poor product quality, low product image, and difficulty in partnership. For B2B buying strategies, a quality management system, various auction tactics based on items, and a supplier management system were recommended.

미디어 아카이브 구축을 위한 등장인물, 사물 메타데이터 생성 시스템 구현 (Implementation of Character and Object Metadata Generation System for Media Archive Construction)

  • 조성만;이승주;이재현;박구만
    • 방송공학회논문지
    • /
    • 제24권6호
    • /
    • pp.1076-1084
    • /
    • 2019
  • 본 논문에서는 딥러닝을 적용하여 미디어 내의 등장인물 및 사물을 인식, 메타데이터를 추출하고 이를 통해 아카이브를 구축하는 시스템을 개발하였다. 방송 분야에서 비디오, 오디오, 이미지, 텍스트 등의 멀티미디어 자료들을 디지털 컨텐츠로 전환하기 시작한지는 오래 되었지만, 아직 구축해야 할 자료들은 방대하게 남아있다. 따라서 딥러닝 기반의 메타데이터 생성 시스템을 구현하여 미디어 아카이브 구축에 소모되는 시간과 비용을 절약 할 수 있도록 하였다. 전체 시스템은 학습용 데이터 생성 모듈, 사물 인식 모듈, 등장인물 인식 모듈, API 서버의 네 가지 요소로 구성되어 있다. 미디어 내에서 등장인물 및 사물을 인식하여 메타데이터로 추출할 수 있도록 딥러닝 기술로 사물 인식 모듈, 얼굴 인식 모듈을 구현하였다. 딥러닝 신경망을 학습시키기 위한 데이터를 구축하기 용이하도록 학습용 데이터 생성 모듈을 별도로 설계하였으며 얼굴 인식, 사물 인식의 기능은 API 서버 형태로 구성하였다. 1500명의 인물, 80종의 사물 데이터를 사용하여 신경망을 학습시켰으며 등장인물 테스트 데이터에서 98%, 사물 데이터에서 42%의 정확도를 확인하였다.

실시간 얼굴인식 시스템을 위한 새로운 LINF 알고리즘의 제안 (The Suggestion of LINF Algorithm for a Real-time Face Recognition System)

  • 장혜경;강대성
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.79-86
    • /
    • 2005
  • 본 논문에서는 실시간 얼굴인식 시스템을 위한 새로운 LINF(Linear Independent Non-negative Factorization) 알고리즘을 제안한다. 시스템은 크게 얼굴추출 부분과 얼굴인식 부분으로 구성 되어 있으며, 얼굴추출 부분에는 차영상, 눈과 입의 영역 검출 그리고 정규화 방법을 사용하였고, 얼굴인식 부분에는 추출된 얼굴 후보 영역 영상에 LINF 를 적용하였다. 기존의 PCA(Principal Component Analysis)만을 사용한 인식시스템은 낮은 인식률을 보였으며, LDA(Linear Discriminants Analysis)만을 사용한 인식시스템에서는 학습데이터의 수에 비하여 영상의 화소 개수가 많은 경우 LDA를 그대로 적용하기 곤란하였다. 이러한 단점을 극복하기 위하여, 본 논문에서 제안하는 시스템은 기존의 고유얼굴과 달리 비음수 값을 갖는 행렬로 차원을 축소하여 LDA를 적용하였다. 제안한 시스템의 성능을 평가하기 위하여 자체 제작한 DAUface 데이터베이스와 영국 Cambridge 에 있는 AT&T 연구소에서 제공하는 ORL 데이터베이스를 가지고 실험을 하였다. 실험 결과, 제안된 방법이 PCA 방법과 LDA 방법, ICA(Independent Component Analysis) 방법, 그리고 PLMA(PCA-based LDA mixture algorithm)에 비해 인식률이 상당히 우수함을 알 수 있었다.

여성결혼이민자를 위한 패션 스타일링 교육 프로그램 개발 (Fashion Styling Educational Program Development Junghee Yang for Female Marriage Immigrant)

  • 양정희
    • 패션비즈니스
    • /
    • 제22권2호
    • /
    • pp.40-50
    • /
    • 2018
  • This study is intended to develop a fashion styling training program for female international marriage immigrants. To collect basic data for program development, a total of ten female international marriage immigrants living in Changwon, Gyeongsangnam-do, were interviewed on relevant subjects, such as clothing life and their interest in fashion and fashion training programs. According to the interviews, they prefer Korean fashions, have difficulty purchasing and coordinating clothes while living in Korea, and felt that others were staring at them because of their appearance and fashion styles. For the question about interest in fashion, most respondents answered that they have great interest in fashion and managing their appearance. For the question about the need for a training program in fashion styling for female international marriage immigrants, most respondents answered that it is necessary, and most respondents also answered that they would participate in such a program if it were available. The contents of the training program for fashion styling for female international marriage immigrants was composed of the following sections: Understanding of Fashion Styling, Variety of Fashion Styling, and Fashion Styling Practice. The section on the understanding of fashion styling is composed of the concept of fashion styling and the elements of fashion styling. The section on variety in fashion styling is composed of styling based on fashion image, face type, body type, and TPO. The section on fashion styling practice is composed of the practice of fashion styling on an actual person based on the knowledge obtained through the program.

투사에 기초한 얼굴 인식 알고리즘들의 통계적 분석 (Statistical Analysis of Projection-Based Face Recognition Algorithms)

  • 문현준;백순화;전병민
    • 한국통신학회논문지
    • /
    • 제25권5A호
    • /
    • pp.717-725
    • /
    • 2000
  • 최근 수년간 얼굴인식에 관한 많은 알고리즘이 개발되었고 그 대다수가 view와 투사에 기초한 알고리즘이었다. 본 논문에서의 투사는 비단 직교 기저상에 영상을 투사하는 것으로 국한하지 않고 영상 화소값을 변환하는 일반적인 선형 변환으로써 상관관계, 주성분 분석, 클러스트링, gray scale 투사, 그리고 추적 필터매칭을 포함한다. 본 연구에서는 FERET 데이터베이스 상의 얼굴 영상을 평가한 알고리즘들을 세부적으로 분석하고자 한다. 투사에 기초한 알고리즘은 3단계로 구성된다. 첫 번째 단계는 off-line상에서 행하며 알고리즘 설계자에 의해 새로운 기저가 설정되거나 또는 학습을 통해 새로운 기저를 결정한다. 두 번째 단계는 on-line상에서 행해지며 영상을 설정된 새로운 기저상에 투사한다. 세 번째 단계는 on-line상에서 행해지며 영상내의 얼굴은 가장 인접한 이웃 분류자로 인식된다. 대부분의 평가 방법들은 단일 gallery 상에서의 성능 평가가 이루어짐으로써 알고리즘 성능을 충분히 측정하지 못하는 반면 본 연구에서는 독립된 galley들의 집합을 구성함으로써 각각의 다른 galley상에서 가지는 변화와 이들의 상대적 성능을 평가한\ulcorner.

  • PDF

터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안 (Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face)

  • 추엔 팜;신휴성
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.508-518
    • /
    • 2023
  • 이 논문은 LiDAR 스캔 또는 사진측량 기술에 의해 재구성된 3D 디지털 모델을 기반으로 터널 벽면의 불연속면을 자동으로 매핑하는 새로운 접근 방식을 제안한다. 본 제안에서는 U-Net이라 불리는 딥러닝 시맨틱 영역분할 모델을 사용하며, 터널 막장면의 3D 지형 모델에서 불연속면 영역을 식별해 낸다. 제안된 딥러닝 모델은 투영된 RGB 이미지, 면의 깊이 이미지 및 국부적인 면의 표면 속성 이미지(즉, 법선 벡터 및 곡률 이미지)를 포함한 다양한 정보를 종합 학습하여 기본 3차원 이미지에서 불연속면 영역을 효과적으로 분할한다. 이후 영역분할 결과는 면의 깊이 맵과 투영 행렬을 사용하여 3D 모델로 다시 투영시키고, 3D 공간 내에서 불연속면의 위치 및 범위를 정확하게 표현한다. 영역분할 모델의 성능은 영역 분할된 결과를 해당 지면 실측 값과 비교함으로써 평가하였으며, IoU(intersection-over-union) 값이 약 0.8 정도로 나타나 영역분할 결과의 높은 정확성을 확인하였다. 여전히 학습데이터가 제한적 이었음에도 불구하고, 제안 기법은 3D 모델의 점군 데이터를 불연속면의 유사군으로 그룹화하기 위해 전 막장면의 법선 벡터와 클러스터링과 같은 비지도 학습기반 알고리즘에만 의존하던 기존 접근 방식의 한계의 극복 가능성을 보여주었다.

영상의 위상 차를 이용한 얼굴인식 (Face Recognition Using a Phase Difference for Images)

  • 김선종;구탁모;성효경;최흥문
    • 전자공학회논문지S
    • /
    • 제35S권6호
    • /
    • pp.81-87
    • /
    • 1998
  • 본 논문에서는 얼굴 영상간의 위상 차를 이용하여 얼굴을 인식하는 시스템을 제안하였다. 제안된 시스템에서는 KLT(Karhunen-Loeve transform)를 이용하여 복구가 가능하도록 영상을 압축하고, 계산량도 줄였다. 압축된 학습 대상 영상을 미리 제안된 시스템에서 학습시킨 후, 인식 대상 얼굴 영상을 압축시킨다. 압축된 영상과 기존의 학습된 얼굴영상들과의 위상차를 구하고 이 위상차에 여현 함수를 적용하여 그 값이 최대가 되는 얼굴로 인식하도록 하였다. 두 얼굴 영상의 위상차는 벡터 내적방법에 의해 구하여지며, 이를 이용하면 기존의 학습방법을 이용하는 시스템보다 계산이 간단하고 처리시간도 빠르다. 또한 영상간 규준화된 위상차는 조명 및 회전에 불변인식이 가능하고, 여현 함수의 적용으로 이동에도 어느정도 불변인식이 가능하다. 그리고 연결웨이트에는 영상에 대한 정보를 그대로 갖고 있어서, 기존의 신경망과 같은 전체적인 재학습을 하지 않고도 새로운 영상만을 추가학습이 가능하므로 확장학습이 용이하다. 각각 10가지 얼굴영상을 갖는 40 명의 ORL 얼굴영상에 실험한 결과, 인식률이 기존의 방법과 비슷한 8% 오차범위 내에서 학습시간이 PC에서도 수 분밖에 안 걸리는 빠른 얼굴인식이 가능함을 확인하였다.

  • PDF

Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식 (Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features)

  • 장익훈;이우신;김남철
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.76-85
    • /
    • 2011
  • 본 논문에서는 Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식 방법을 제안한다. 제안된 방법에서는 먼저 시험 영상에 Gabor 변환과 웨이브렛 변환을 적용한다. 웨이브렛 영역의 상세 대역에는 Donoho의 연역치화를 적용하여 잡음을 제거한다. 이어서 Gabor 영상에는 크기 연산자를 적용하고 웨이브렛 부대역에는 BDIP와 BVLC 연산자를 적용한다. 그런 다음 Gabor 크기 영상과 BDIP, BVLC 부대역에 대하여 통계치를 계산하여 그 결과들을 벡터화하고 융합하여 특징 벡터로 사용한다. 분류 단계에서는 얼굴 인식에 주로 사용되는 WPCA를 분류기로 하여 시험 특징 벡터와 가장 유사한 학습 특징 벡터를 찾는다. 실험 결과 제안된 방법은 실험 문서 영상 DB에 대하여 비교적 낮은 특징 벡터 차원으로 매우 우수한 언어 인식 성능을 보여준다.

Gabor, MDLC, Co-Occurrence 특징의 융합에 의한 언어 인식 (Language Identification by Fusion of Gabor, MDLC, and Co-Occurrence Features)

  • 장익훈;김지홍
    • 한국멀티미디어학회논문지
    • /
    • 제17권3호
    • /
    • pp.277-286
    • /
    • 2014
  • 본 논문에서는 Gabor 특징과 MDLC 특징, 그리고 co-occurrence 특징의 융합에 의한 질감 특징 기반언어 인식 방법을 제안한다. 제안된 방법에서는 먼저 시험 영상에 Gabor 변환에 이은 크기 연산자를 적용하여 Gabor 크기 영상을 얻고 그 통계치를 계산하여 결과를 벡터화한다. 이어서 MDLC 연산자를 이용하여 MDLC 영상을 얻고 역시 그 통계치를 계산하여 벡터화한다. 다음으로 시험 영상으로부터 GLCM을 계산하고 이를 이용하여 co-occurrence 특징을 계산한 다음 벡터화한다. 이들 Gabor, MDLC, co-occurrence 특징에 의한 벡터들은 벡터 융합에 의하여 특징 벡터로 사용된다. 분류 단계에서는 얼굴 인식에 주로 사용되는 WPCA를 분류기로 하여 시험 특징 벡터와 가장 유사한 학습 특징 벡터를 찾는다. 제안된 방법의 성능은 15개국 언어의 문서를 스캔하여 얻은 시험 문서 영상 DB에 대한 평균 인식률을 조사하여 알아본다. 실험 결과 제안된 방법은 시험 DB에 대하여 비교적 낮은 특징 벡터 차원으로 매우 우수한 언어 인식 성능을 보여준다.