• Title/Summary/Keyword: Train Communication Network(TCN)

검색결과 29건 처리시간 0.024초

TCN(Train Communication Network) 통신 시험용 WTB(Wire Train Bus) Analyzer 개발 (The development of WTB(Wire Train Bus) Analyzer for the TCN(Train Communication Network) testing)

  • 전성준;백진성;손강호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1936-1945
    • /
    • 2008
  • In Korea, TCN has applied to the Korean High-speed Train (HSR350X) through G7 High-speed Train development project. TCN is the most suitable international standard communication network for distributed control systems that is adopted for high-speed of vehicle, safety and flexibility. TCN is the network exclusively for the high-speed train and electrical trains. This TCN satisfies the network standards. The network standards are real time communication, fault tolerance design, integrated data system, resistance of environment, automated recognition for modification of vehicle formation and maintenance. The purpose of this research is applying the development of WTB analyzer which is part of communication network system TCN, to check the communication of high-speed trains and electrical trains.

  • PDF

철도차량 통신 네트워크(TCN)에서의 WTB 이중화에 대한 프로토콜 분석 플랫폼 (A Protocol Analysis Platform for the WTB Redundancy in Train Communication Network(TCN))

  • 최석인;손진근
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.23-29
    • /
    • 2013
  • TCN(train communication network) standard was approved in 1999 by the IEC (IEC 61375-1) and IEEE (IEEE 1473-T) organizations to warrant a reliable train and equipment interoperability. TCN defines the set of communication vehicle buses and train buses. The MVB(multifunction vehicle bus) defines the data communication interface of equipment located in a vehicle and the WTB(wire train bus) defines the data communication interface between vehicles. The WTB and each MVB will be connected over a node acting as gateway. Also, to support applications demanding a high reliability, the standard defines a redundancy scheme in which the bus may be double-line and redundant-node implemented. In this paper we have presented protocol analysis platform for the WTB redundancy which is part of TCN system, to verify communication state of high-speed trains. As a confirmation of its validity, the technology described in this paper has been successfully applied to state monitoring and protocol verification of redundancy WTB based on TCN.

전동차 차량 네트웍 성능평가기술 연구 (The Study of Performance Evaluation of Train Communication Network for EMU)

  • 이수길;한성호;구동회;송용수
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.659-665
    • /
    • 2003
  • This paper presents a Train Communication Network simulator (TCNS) that can be used to evaluate the performance of TCN. TCN was accepted as the standard of the protocol for the communication network in trains. We carry out some simulation tests using the TCNS to show practical uses of the simulator. Results of some simulation tests are also reported. This paper presents a Train Communication Network simulator(TCNS) that can be used to evaluate the performance of TCN. TCN was accepted as the standard of the protocol for the communication network in trains. TCN of fieldbus was adopted as international standardization IEC 61375 in 1999. It has been operating on G7 train in korea. This paper developed TCNS(Train Communication Network simulator) as a simulator for performance evaluation. We can verify TCNS for preventing many kinds of occurring problems between the devices in data-communication. This study was developed TCNS as a simulator for the performance evaluation. We analyzed correlation between token, transmission data per paket and transmission speed of bus, through the TCNS, also analyzed result according to error rate of TCN. We carry out some simulation tests using the TCNS to show practical uses of the simulator. Results of some simulation tests are also reported.

  • PDF

TCN(IEC 61375-1)을 이용한 열차진단제어장치의 실증시험 연구 (The On-Board Test Study of Train Diagnostic and Control System Using TCN(IEC 61375-1))

  • 김훈;홍구선;한정수;최종묵
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1413-1427
    • /
    • 2007
  • The Train Networks has a goal which requires the fast and correct data communication for distributable equipment systems. For this, in 1999, some train makers had established the standard TCN(IEC61375-1) for the inter-operating between equipment systems. Recently, TCN is being used in EU, China and the requirement to use it is growing up by many other countries more and more. The TCN was adopted at Korea High-speed Train with first in Korea, and Rotem Company finished the design of TCMS with TCN network for Istanbul EMU and KTX-2 Train and tests them. TCN(Train Communication Networks) defines the set of communication vehicle buses and train buses. The MVB(Multifunction Vehicle Bus) defines the data communication interface of equipment located in a vehicle and the WTB(Wire Train Bus) defines the data communication interface between vehicles. This paper examines whether the result of on-board test is satisfied with the IEC61375-1(International Electrotechnical Commission 61375-1) which is the international standard of TCN and introduce the results.

  • PDF

Study on Fault Diagnosis Method of Train Communication Network applied to the prototype Korean High Speed Train

  • Cho, Chang-Hee;Park, Min-Kook;Kwon, Soon-Man;Kim, Yong-Ju;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2169-2173
    • /
    • 2003
  • The development project of Korean High Speed Train (KHST) was started in 1996. As a national research project, the KHST project aims for a development of the next generation prototype train that has a maximum speed of 350 km/h. The development process of prototype KHST including 7 vehicles was completed last year and currently the prototype train is on its way of test running over the test track with gradually increased speed. The prototype KHST uses the real time network called TCN (Train Communication Network) for exchanging information between various onboard control equipments. After 10 years of development and modification period, TCN was confirmed as international standard (IEC61375-1) for the electrical railway equipment train bus. In the prototype KHST, all major control devices are connected by TCN and exchange their information. Such devices include SCU (Supervisory Control Unit), ATC (Automatic Train Control), TCU (Traction Control Unit), and so forth. For each device that sends and receives data using TCN, a device has to find out whether TCN is in normal or failure state before its data exchange. And also a device must have a proper method of data validation that was received in a normal TCN state. This is a one of the major important factors for devices using network. Some misleading information can lead the entire system to a catastrophic condition. This paper briefly explains how TCN was implemented in the prototype KHST train, and also shows what kind of the fault diagnosis method was adopted for a fail safe operation of TCN system

  • PDF

내고장성 전동차 네트워크를 위한 결함 발생기 연구 (A Study on the Implementation of the Fault-Injector for the Fault Tolerant Train Communication Network)

  • 유재윤;박재현
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.859-866
    • /
    • 2001
  • Recently, fault injection techniques are used for evaluation of the fault coverage properties of safety-critical systems. This paper describes the TCN Fault Injector(TFI) implemented for TCN safety analysis. The implemented TFI injects network level faults to Intelligent MVB Controller that is designed for the Korean High Speed Train. With TFI, it can be verified whether the MVB controller meets TCN specification and its safety requirements.

  • PDF

TCN을 통한 메시지 전송 능력 향상에 관한 연구 (Performance Improvement of Message Transmission over TCN(Train Communication Network))

  • 최명호;문종천;박재현
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권10호
    • /
    • pp.720-726
    • /
    • 2004
  • The data transmission over MVB(Multifunction Vehicle Bus) of TCN(Train Communication Network) is divided into the periodic transmission phase and the sporadic transmission phase. TCN standard recommends the event-polling method as the message transfer in the sporadic phase. However, since the event-polling method does not use pre-scheduling to the priority of the messages, it is inefficient for the real-time systems. To schedule message transmission, a master node should know the priority of message to be transmitted by a slave node prior to the sporadic phase, but the existing TCN standard does not support any protocol for this. This paper proposes the slave frame bit-stuffing algorithm, with which a master node gets the necessary information for scheduling and includes the simulation results of the event-polling method and the proposed algorithm.

철도 제어통신 네트워크 프로토콜에서 마스터권한 진달 기법 (Mastership Passing Algorithm for Train Communication Network Protocol)

  • 서민호;박재현;최영준
    • 한국철도학회논문집
    • /
    • 제10권1호
    • /
    • pp.88-95
    • /
    • 2007
  • TCN(Train Communication Network) adopts the master/slave protocol to implement real-time communication. In this network, a fault on the master node, cased by either hardware or software failure, makes the entire communication impossible over TCN. To reduce fault detection and recovery time, this paper propose the contention based mastership transfer algorithm. Slave nodes detect the fault of master node and search next master node using the proposed algorithm. This paper also shows the implementation results of a SoC-based Fault-Tolerant MVB Controller(FT-MVBC) which includes the fault-detect-logic as well as the MVB network logic to verify this algorithm.

고속전철 제어 시스템을 위한 TCN/WTB 구현 및 성능 평가에 관한 연구 (A study on implementation and performance evaluation of the TCN/WTB for KHST)

  • 심세섭;박재현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.155-155
    • /
    • 2000
  • A high performance control and monitoring system for a high speed railway train requires a reliable the real-time communication network. TCN/WTB is designed for the data transmission over the train bus, and UIC556 defines that all the data be transmitted over TCN/WTB. This paper evaluates the performance of the link layer of WTB(Wired Train Bus). The evaluated results can be used for the selection of parameters for the sporadic message data.

  • PDF

이중 무선랜 기반 차량 통신망에서의 열차 토폴러지 구성 프로토콜(TTDP) (Train Topology Discovery Protocol(TTDP) over Dual-Band WLAN-Based Train Communication Network)

  • 강신광;박재현
    • 한국통신학회논문지
    • /
    • 제42권5호
    • /
    • pp.1102-1109
    • /
    • 2017
  • 열차제어네트워크(TCN)는 현재 단순 제어 기능을 넘어 멀티미디어 등 승객 서비스를 지원하기 위하여 이더넷(Ethernet)을 지원할 수 있어야 한다. 그래서 최근 International Electronical Committee(IEC)는 기존의 TCN 표준인 IEC 61375를 개정하여 Ethernet Train Backbone(ETB), Ethernet Consist Network(ECN)를 포함하였다. 특히 ETB에서는 열차 구성이 자동으로 되는 열차 차량 가변편성 통신규약(TTDP)이 포함되었다. 한편 차세대 온 보드 네트워크로서 무선랜을 사용할 경우, TTDP는 무선 통신의 특성에 맞도록 수정되어야 한다. 본 논문에서는 송신전력을 제어하며 RSS 값과 HELLO 프레임에 대한 ACK 프레임의 수신 횟수를 이용하여 이웃 노드를 찾는 무선 TTDP를 제안한다. 그리고 대역폭이 다른 두 무선 랜 인터페이스를 사용하여 실행된 TTDP의 옳고 그름의 유무를 판정한다. 제안된 TTDP는 불필요한 다른 노드와의 간섭을 줄일 수 있도록 한다. 성능평가를 위해 무선 네트워크 시뮬레이션에서 가장 많이 쓰이는 NS-2를 사용하였다. 평가 결과, 제안된 TTDP가 무선에서도 높은 신뢰도를 보였다.