• Title/Summary/Keyword: Train Communication Network(TCN)

Search Result 29, Processing Time 0.024 seconds

The development of WTB(Wire Train Bus) Analyzer for the TCN(Train Communication Network) testing (TCN(Train Communication Network) 통신 시험용 WTB(Wire Train Bus) Analyzer 개발)

  • Jeon, Seong-Joon;Paik, Jin-Sung;Shon, Kang-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1936-1945
    • /
    • 2008
  • In Korea, TCN has applied to the Korean High-speed Train (HSR350X) through G7 High-speed Train development project. TCN is the most suitable international standard communication network for distributed control systems that is adopted for high-speed of vehicle, safety and flexibility. TCN is the network exclusively for the high-speed train and electrical trains. This TCN satisfies the network standards. The network standards are real time communication, fault tolerance design, integrated data system, resistance of environment, automated recognition for modification of vehicle formation and maintenance. The purpose of this research is applying the development of WTB analyzer which is part of communication network system TCN, to check the communication of high-speed trains and electrical trains.

  • PDF

A Protocol Analysis Platform for the WTB Redundancy in Train Communication Network(TCN) (철도차량 통신 네트워크(TCN)에서의 WTB 이중화에 대한 프로토콜 분석 플랫폼)

  • Choi, Seok-In;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • TCN(train communication network) standard was approved in 1999 by the IEC (IEC 61375-1) and IEEE (IEEE 1473-T) organizations to warrant a reliable train and equipment interoperability. TCN defines the set of communication vehicle buses and train buses. The MVB(multifunction vehicle bus) defines the data communication interface of equipment located in a vehicle and the WTB(wire train bus) defines the data communication interface between vehicles. The WTB and each MVB will be connected over a node acting as gateway. Also, to support applications demanding a high reliability, the standard defines a redundancy scheme in which the bus may be double-line and redundant-node implemented. In this paper we have presented protocol analysis platform for the WTB redundancy which is part of TCN system, to verify communication state of high-speed trains. As a confirmation of its validity, the technology described in this paper has been successfully applied to state monitoring and protocol verification of redundancy WTB based on TCN.

The Study of Performance Evaluation of Train Communication Network for EMU (전동차 차량 네트웍 성능평가기술 연구)

  • Lee Su-Gil;Han Seong-Ho;Koo Dong-Hoe;Song Young-Soo
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.659-665
    • /
    • 2003
  • This paper presents a Train Communication Network simulator (TCNS) that can be used to evaluate the performance of TCN. TCN was accepted as the standard of the protocol for the communication network in trains. We carry out some simulation tests using the TCNS to show practical uses of the simulator. Results of some simulation tests are also reported. This paper presents a Train Communication Network simulator(TCNS) that can be used to evaluate the performance of TCN. TCN was accepted as the standard of the protocol for the communication network in trains. TCN of fieldbus was adopted as international standardization IEC 61375 in 1999. It has been operating on G7 train in korea. This paper developed TCNS(Train Communication Network simulator) as a simulator for performance evaluation. We can verify TCNS for preventing many kinds of occurring problems between the devices in data-communication. This study was developed TCNS as a simulator for the performance evaluation. We analyzed correlation between token, transmission data per paket and transmission speed of bus, through the TCNS, also analyzed result according to error rate of TCN. We carry out some simulation tests using the TCNS to show practical uses of the simulator. Results of some simulation tests are also reported.

  • PDF

The On-Board Test Study of Train Diagnostic and Control System Using TCN(IEC 61375-1) (TCN(IEC 61375-1)을 이용한 열차진단제어장치의 실증시험 연구)

  • Kim, Hun;Hong, Goo-Sun;Han, Jeong-Soo;Choi, Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1413-1427
    • /
    • 2007
  • The Train Networks has a goal which requires the fast and correct data communication for distributable equipment systems. For this, in 1999, some train makers had established the standard TCN(IEC61375-1) for the inter-operating between equipment systems. Recently, TCN is being used in EU, China and the requirement to use it is growing up by many other countries more and more. The TCN was adopted at Korea High-speed Train with first in Korea, and Rotem Company finished the design of TCMS with TCN network for Istanbul EMU and KTX-2 Train and tests them. TCN(Train Communication Networks) defines the set of communication vehicle buses and train buses. The MVB(Multifunction Vehicle Bus) defines the data communication interface of equipment located in a vehicle and the WTB(Wire Train Bus) defines the data communication interface between vehicles. This paper examines whether the result of on-board test is satisfied with the IEC61375-1(International Electrotechnical Commission 61375-1) which is the international standard of TCN and introduce the results.

  • PDF

Study on Fault Diagnosis Method of Train Communication Network applied to the prototype Korean High Speed Train

  • Cho, Chang-Hee;Park, Min-Kook;Kwon, Soon-Man;Kim, Yong-Ju;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2169-2173
    • /
    • 2003
  • The development project of Korean High Speed Train (KHST) was started in 1996. As a national research project, the KHST project aims for a development of the next generation prototype train that has a maximum speed of 350 km/h. The development process of prototype KHST including 7 vehicles was completed last year and currently the prototype train is on its way of test running over the test track with gradually increased speed. The prototype KHST uses the real time network called TCN (Train Communication Network) for exchanging information between various onboard control equipments. After 10 years of development and modification period, TCN was confirmed as international standard (IEC61375-1) for the electrical railway equipment train bus. In the prototype KHST, all major control devices are connected by TCN and exchange their information. Such devices include SCU (Supervisory Control Unit), ATC (Automatic Train Control), TCU (Traction Control Unit), and so forth. For each device that sends and receives data using TCN, a device has to find out whether TCN is in normal or failure state before its data exchange. And also a device must have a proper method of data validation that was received in a normal TCN state. This is a one of the major important factors for devices using network. Some misleading information can lead the entire system to a catastrophic condition. This paper briefly explains how TCN was implemented in the prototype KHST train, and also shows what kind of the fault diagnosis method was adopted for a fail safe operation of TCN system

  • PDF

A Study on the Implementation of the Fault-Injector for the Fault Tolerant Train Communication Network (내고장성 전동차 네트워크를 위한 결함 발생기 연구)

  • You, Jae-Youn;Park, Jae-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.859-866
    • /
    • 2001
  • Recently, fault injection techniques are used for evaluation of the fault coverage properties of safety-critical systems. This paper describes the TCN Fault Injector(TFI) implemented for TCN safety analysis. The implemented TFI injects network level faults to Intelligent MVB Controller that is designed for the Korean High Speed Train. With TFI, it can be verified whether the MVB controller meets TCN specification and its safety requirements.

  • PDF

Performance Improvement of Message Transmission over TCN(Train Communication Network) (TCN을 통한 메시지 전송 능력 향상에 관한 연구)

  • Cho Myung-ho;Moon Chong-chun;Park Jaehyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.720-726
    • /
    • 2004
  • The data transmission over MVB(Multifunction Vehicle Bus) of TCN(Train Communication Network) is divided into the periodic transmission phase and the sporadic transmission phase. TCN standard recommends the event-polling method as the message transfer in the sporadic phase. However, since the event-polling method does not use pre-scheduling to the priority of the messages, it is inefficient for the real-time systems. To schedule message transmission, a master node should know the priority of message to be transmitted by a slave node prior to the sporadic phase, but the existing TCN standard does not support any protocol for this. This paper proposes the slave frame bit-stuffing algorithm, with which a master node gets the necessary information for scheduling and includes the simulation results of the event-polling method and the proposed algorithm.

Mastership Passing Algorithm for Train Communication Network Protocol (철도 제어통신 네트워크 프로토콜에서 마스터권한 진달 기법)

  • Seo, Min-Ho;Park, Jae-Hyun;Choi, Young-Joon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.88-95
    • /
    • 2007
  • TCN(Train Communication Network) adopts the master/slave protocol to implement real-time communication. In this network, a fault on the master node, cased by either hardware or software failure, makes the entire communication impossible over TCN. To reduce fault detection and recovery time, this paper propose the contention based mastership transfer algorithm. Slave nodes detect the fault of master node and search next master node using the proposed algorithm. This paper also shows the implementation results of a SoC-based Fault-Tolerant MVB Controller(FT-MVBC) which includes the fault-detect-logic as well as the MVB network logic to verify this algorithm.

A study on implementation and performance evaluation of the TCN/WTB for KHST (고속전철 제어 시스템을 위한 TCN/WTB 구현 및 성능 평가에 관한 연구)

  • 심세섭;박재현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.155-155
    • /
    • 2000
  • A high performance control and monitoring system for a high speed railway train requires a reliable the real-time communication network. TCN/WTB is designed for the data transmission over the train bus, and UIC556 defines that all the data be transmitted over TCN/WTB. This paper evaluates the performance of the link layer of WTB(Wired Train Bus). The evaluated results can be used for the selection of parameters for the sporadic message data.

  • PDF

Train Topology Discovery Protocol(TTDP) over Dual-Band WLAN-Based Train Communication Network (이중 무선랜 기반 차량 통신망에서의 열차 토폴러지 구성 프로토콜(TTDP))

  • Kang, Shinkwang;Park, Jaehyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1102-1109
    • /
    • 2017
  • In Train Control Network(TCN), to support advanced services beyond control applications, it was revised to support high speed ethernet as IEC 61375-2-5(ETB) and IEC 61375-3-4(ECN). And Train Topology Discovery Protocol(TTDP) was included by which train-consist can be automatically configured. Meanwhile, to adopt wireless LAN as an next onboard network, TTDP need to be modified to reflect the characteristics of WLAN. This paper proposed a TTDP for WLAN using transmission power control and the number of HELLO-ACK handshake. And it determined whether the TTDP executed using the two WLAN interfaces having different bandwidths is correct or not. The proposed TTDP can allow to reduce interference from other nodes. For evaluation of performance of TTDP, NS-2 was used. The evaluation result shows the high reliability of the TTDP in wireless environment.