• 제목/요약/키워드: Train/track interaction

검색결과 106건 처리시간 0.024초

Three-dimensional finite element analysis of the interference of adjacent moving trains resting on a ballasted railway track system

  • Marwah Abbas Hadi;Saif Alzabeebee;Suraparb Keawsawasvong
    • Geomechanics and Engineering
    • /
    • 제32권5호
    • /
    • pp.483-494
    • /
    • 2023
  • High-speed trains became common nowadays due to the need for fast and safe mean to transport goods and people. However, the use of high-speed trains necessitates the examination of the critical speed, which is the train speed at which the maximum settlement of the railway track occurs. The critical speed and railway track settlement have been investigated considering only one train in previous studies. However, it is normal to have two adjacent trains moving at the same time. This paper aims to understand how the interference of two moving trains affects the settlement and critical speed of ballasted railway track. Calibrated three-dimensional finite element models of railway track subjected to one moving train and two moving trains have been developed to address the aim of the study. It is found that the interference dramatically increases the railway track settlement with a percentage increase ranges between 5 and 100%. It is also found that the percentage increase of the railway track settlement depends on the train speed and the distance between the moving trains. In addition, it is found that the thickness of the ballast layer and the stiffness of the subgrade have minor influence on the percentage increase of the settlement. Importantly, the results of this paper illustrate the importance of the interference of the moving trains on the dynamic response of the railway track. Thus, there is a need to consider the dynamic interaction between the adjacent moving trains in the design of railway track foundation.

궤도하부강성 변화에 따른 방진슬라브 궤도의 진동특성 연구 (A Study on characteristics of vibration of a floating slab track according to change of stiffness of track)

  • 강윤석;양신추;오지택
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.572-579
    • /
    • 1998
  • In this paper, an analytical model for analyzing the interaction between train and floating slab track is presented. Train is modelled by 4-lumped masses system which are composed of a carbody supported by secondary suspension, a bogie frame supported by primary suspension, and two wheelsets supported by nonlinear Hertzian springs. In the track model, rail is considered to have a distributed mass and to be supported discretely at sleepers above ballast on slab. The slab supported by discrete isolators put on fixed floor is modelled by finite beam elements. Numerical analyses are carried out to examine anti-vibration effect of the GERB slab track which is same type laid in Puchon station on the subway No. 7 Line.

  • PDF

분기기와 교량의 상호작용 특성에 관한 연구 (A study on the axial force and displacement characteristics of turnout on a bridge)

  • 양신추;김인재;김은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1306-1311
    • /
    • 2006
  • Most of design parameters of Railway Structures are determined by the serviceability requirements, rather than the structural safety requirements. The serviceability requirements come from Ensuring of Running Safety and Ride Comfort of Train, Reduction of Track Maintenance Work Track-Bridge Interaction should be considered in the design of railway structures. In this study, a numerical method which precisely evaluate an axial force in rail and a rail expansion and contraction when turnout exist in succession on a CWR on a ballasted or on a ballastless track of bridge is developed. From the parameter studies using the developed method, additional stress of stock rail almost 25% is generated due to stock and lead rail interaction, even embankment not bridge. In case of ballasted track, additional stress of stock rail on bridge is very greater than on embankment, and therefore require detailed review in bridge design with turnout. Stresses of turnout rails on bridge are very sensitive according to the installed positions. In case of ballastless track, Stresses of turnout rails are similar as those of normal track

  • PDF

철도차량 동특성 해석을 위한 휠/레일 상호작용의 선형모델링 연구 (A Study on the Linear Modeling of Wheel/Rail Interaction for the Train Dynamics)

  • 박찬경;박기준;박준서;배대성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.517-524
    • /
    • 1998
  • A liner numerical model of the wheel-rail interation and the track geometry is developed for multi-body dynamics program. The simulation results are very simulation to these of VAMPIRE simulation. This program can be used for the analysis of train dynamic performance.

  • PDF

주행 안전을 고려한 고속철도 자갈궤도 및 콘크리트궤도 레일패드의 강성 상한 결정 (Determination of Upper Limit of Rail Pad Stiffness for Ballasted and Concrete Track of High-Speed Railway Considering Running Safety)

  • 양신추;장승엽;김은
    • 한국철도학회논문집
    • /
    • 제14권6호
    • /
    • pp.526-534
    • /
    • 2011
  • 본 연구에서는 고속철도의 자갈궤도와 콘크리트궤도에서 열차 주행 안전 측면에서 관리해야 할 레일패드 강성의 상한값을 차량 및 궤도의 동특성과 운영환경을 고려하여 결정하는 방법을 제시하였다. 차량-궤도의 상호작용해석의 중요 입력 파라메타인 궤도틀림과 관련하여 프랑스 및 독일에서 제시한 고저틀림 PSD(파워 스펙트럼 밀도)와 경부고속철도 1단계 구간 자갈궤도 및 콘크리트궤도에서 계측한 고저틀림 자료를 통하여 얻은 PSD를 기초로 하여 넓은 범위의 주파수 영역에서 적용할 수 있는 자갈궤도와 콘크리트궤도의 고저틀림 PSD를 제시하였다. 제시된 PSD 기준 모델을 사용하여 시간 영역에서의 고저틀림 입력을 난수 생성(random number generation)을 통하여 구한 후 차량-궤도 상호작용 해석기법을 사용하여 레일패드 강성에 따른 윤중 감소율을 산정하였다. 산정된 윤중 감소율에 대하여 국내 철도차량 안전기준에 관한 규칙의 탈선계수 규정을 적용하여 주행 안전 측면에서 허용할 수 있는 레일패드 강성의 상한값을 제시하였다.

궤도 및 교량 안전성을 고려한 열차 증속가능 속도대역 평가 (Evaluation on Allowable Vehicle Speed Based on Safety of Track and Railway Bridge)

  • 방은영
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.145-151
    • /
    • 2018
  • In this study, the track-bridge interaction analysis was performed using an analytical model considering the track structure, thereby taking into account the linear conditions (R=650 m, cant variation $160{\pm}60mm$) and the dynamic characteristics of the bridge. As a result of the study, the allowable speed on the example bridge considered was calculated at 200 km/h based on vertical deflection, vertical acceleration, and irregularity in longitudinal level, but was also evaluated at 170km/h based on the coefficient of derailment, wheel load reduction, and lateral displacement of the rail head. It is considered desirable to set the speed 170km/h to the speed limit in order to secure the safety of both the bridge and the track. It is judged that there will be no problems with ensuring rail protection and train stability in the speed band.

궤도-교량의 상호작용에 대한 하중이력의 영향 (The Loading History Effect on the Track-bridge Interaction)

  • 윤경민;한상윤;황만호;김해곤;임남형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3156-3159
    • /
    • 2011
  • In case of the continuous welded rail(CWR) track is supported by the railway bridge, the additional axial force is occurred in the CWR due to the track-bridge interaction. In the various design codes such as Korean code, European code, UIC code, etc, three important loads(temperature variation in the bridge-deck, braking/acceleration and the bending of the bridge-deck resulted from the passing train) are treated as the independent loading case. In other words, the additional axial force can be obtained by summing up the three different values calculated by the three independent analysis. However, this analysing method may have an error because the behavior of the longitudinal resistance between the rail and the bridge-deck is under the highly nonlinear. Therefore, in order to exactly analyse the track-bridge interaction, nonlinear loading history and the change of the longitudinal resistance owing to the loading history must be considered in the analysis process. In this study, the loading history effect on the track-bridge interaction is investigated considering the resonable combination of three loads and the longitudinal resistance change.

  • PDF

레일용접부의 요철에 따른 차량 및 궤도 거동특성에 대한 연구 (A study on the characteristics of train and track behaviors due to irregularities at rail welding part)

  • 이진욱;양신추;이안호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.398-405
    • /
    • 1999
  • Large dynamic forces are generated between wheel and rail due to rail surface irregularities at rail welded part. The effects become more and more significant in the view of the present tendency to train speed increasing. Therefore, the purpose of this paper is to derive useful guides for the effective and economical maintenance of rail welded parts through the wheel and rail interaction analyses. A typical shape for the irregularity of rail welded part is assumed to make the analysis quantitative. The effects of the irregularity depth and train speed on the train and track behaviors are investigated.

  • PDF

철도교량 단부 궤도의 사용성 향상을 위한 횡단궤도시스템 적용에 관한 실험적 연구 (Experimental Study on Applying a Transition Track System to Improve Track Serviceability in Railway Bridge Deck Ends)

  • 임종일;송선옥;최정열;박용걸
    • 한국철도학회논문집
    • /
    • 제16권3호
    • /
    • pp.207-216
    • /
    • 2013
  • 콘크리트궤도가 부설된 철도교량 단부의 궤도구성품(레일 및 체결구)에는 교량 단부회전에 의해 상향력 및 압축력과 같은 궤도-교량의 상호작용력이 작용하여 손상 및 성능저하가 유발된다. 이러한 교량의 휨거동에 기인한 단부 궤도의 상호작용에 따른 문제를 해결하고자 본 연구에서는 횡단궤도시스템을 개발하고 그 성능을 입증하였다. 횡단궤도시스템의 구조안정성 검토를 위해 3차원 유한요소해석을 통한 시간이력해석을 실시하고 그 결과를 독일의 성능요구조건 및 관련기준과 비교하였다. 또한, 교량-궤도 상호작용 분석을 위한 시험체를 제작하여 실내시험을 수행하고 횡단궤도시스템의 적용 효과를 평가하였다. 연구결과 횡단궤도시스템의 정, 동적 구조안정성 및 횡단궤도 적용 후 교량 단부 궤도의 상호작용력(레일변위, 레일저부응력 및 체결구 응력)이 크게 저감될 수 있음을 실험적으로 입증하였다.

고속철도교량의 새로운 3차원 유한요소 해석모델의 개발 (Development of a New Three-dimensional Finite Element Analysis Model of High-speed Railway Bridges)

  • 송명관;한인선;김선훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.444-451
    • /
    • 2003
  • In this study, a new three-dimensional finite element analysis model of high-speed railway bridges considering train-bridge interaction, in which various improved finite elements are used for modeling structural members, is proposed. The box-type bridge deck of a railway bridge is modeled by the NFS(Nonconforming Flat Shell) elements with 6 degrees of freedom. Track structures are idealized using the beam finite elements with the offset of beam nodes and those on Winkler foundation with two parameters. And, the vehicle model devised for a high-speed train is employed, which has an articulated bogie system. By Lagrange's equations of motion, the equations of motion of a bridge-train system can be formulated. Finally, by deriving the equations of the forces acting on a bridge considering bridge-train interaction the complete system matrices of total bridge-train system can be constructed. As numerical examples of this study, 2-span PC box-girder bridge is analyzed and results are compared with experimental results.

  • PDF