• Title/Summary/Keyword: Traffic transmission scheme

Search Result 316, Processing Time 0.023 seconds

An asymmetric WDM-EPON structure for the convergence of broadcast and communication (방송통신 통합을 위한 비대칭 WDM-EPON 구조에 관한 연구)

  • Hur Jung;Koo Bon-Jeong;Park Youngil
    • Journal of Broadcast Engineering
    • /
    • v.10 no.2
    • /
    • pp.182-189
    • /
    • 2005
  • In this paper, an asymmetric WDM-EPON transmission scheme is proposed to be used in a high speed access network system, which is required to implement the convergence of broadcast and communication. WDM is used for downstream transmission from OLT to access nodes, satisfying wide bandwidth requirement for broadcasting and various multimedia services. And an EPON scheme, which is cheaper than WDM, is applied to upstream transmission where less bandwidth is required. A transmission test in physical layer was performed successfully and the results are provided. If ONUs are to be used in a home gateway, its protocol should be appropriate to its traffic pattern. Voice is sensitive to a time delay while data is not. A new dynamic bandwidth assignment protocol for PON system, which can cope with various types of data in access network is proposed and its performance is analysed. A maximum cycle time is specified to achieve the QoS of signals sensitive to time delay. And a minimum window is specified to prevent the downstream control signals from uprising. It is shown by simulation that the proposed EPON protocol can provide a better performance than previous ones.

A TCP-Friendly Congestion Control Scheme using Hybrid Approach for Enhancing Fairness of Real-Time Video (실시간 비디오 스트림의 공정성 개선를 위한 TCP 친화적 하이브리드 혼잡제어기법)

  • Kim, Hyun-Tae;Yang, Jong-Un;Ra, In-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.285-289
    • /
    • 2004
  • Recently, due to the high development of the internet, needs for multimedia streams such as digital audio and video is increasing much more. In case of transmitting multimedia streams using the User Datagram Protocol (UDP), it may cause starvation of TCP traffic on the same transmission path, thus resulting in congestion collapse and enormous delay because UDP does not perform TCP-like congestion control. Because of this problem, diverse researches are being conducted on new transmission schemes and protocols intended to efficiently reduce the transmission delay of real-time multimedia streams and perform congestion control. The TCP-friendly congestion control schemes can be classified into the window-based congestion control, which uses the general congestion window management function, and the rate-based congestion control, which dynamically adjusts transmission rate by using TCP modeling equations and the like. In this paper, we suggest the square-root congestion avoidance algorithm with the hybrid TCP-friendly congestion control scheme which the window-based and rate-based congestion controls are dealt with in a combined way. We apply the proposed algorithm to the existing TEAR. We simulate the performance of the proposed TEAR by using NS, and the result shows that it gives better improvement in the stability needed for providing congestion control than the existing TEAR.

Backhaul traffic reduction scheme in intra-aircraft wireless networks (항공기내 무선 네트워크에서 백홀 트래픽 감소 기법)

  • Cho, Moon-Je;Jung, Bang Chul;Park, Pangun;Chang, Woohyuk;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1704-1709
    • /
    • 2016
  • In this paper, we propose efficient uplink data transmission method in ultra dense wireless networks as in intra-aircraft, where large-scale APs and wireless sensors are deployed. In the ultra dense wireless networks, a performance degradation is inevitable due to the inter-AP interference. However, the performance degradation can be avoided if a scheduling algorithm can estimate the amount of interference caused by each wireless sensor and reflects it. SGIR (Signal-to-Generating Interference Ratio) based scheduling algorithms is a typical example. Unfortunately, the scheduling algorithms based on the interference caused by wireless sensors necessarily yield large scale exchange of information through backhaul which connects APs. Therefore, we, in this paper, propose a novel scheme which can dramatically reduce the amount of information which are exchanged through backhaul connection. Monte-Carlo simulation results show that the proposed scheme can reduce the amount of backhaul traffic by 27% without loss of data transmission rate.

An Energy-efficient Pair-wise Time Synchronization Protocol for Wireless Networks (에너지 효율적인 무선 네트워크용 상호 시각 동기화 프로토콜)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1808-1815
    • /
    • 2016
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol, has been already developed to provide time synchronization among nodes in wireless sensor networks. Even though the TPSN's method has been referenced by so many other time synchronization schemes for resource-constrained networks like wireless sensor networks or low power personal area networks, it has some inefficiency in terms of power consumption and network-wide synchronization time (or called convergence time). The main reason is that each node in TPSN needs waiting delay to solve the collision problem due to simultaneous transmission among competing nodes, which causes more power consumption and longer network convergence time for a network-wide synchronization. In this paper an improved scheme is proposed by changing message exchange method among nodes. The proposed scheme not only shortens network-wide synchronization time, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

A Hybrid Type Shaping Scheme in ATM Networks (ATM 망에서 혼합형 셀 간격 제어 기법)

  • 윤석현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.6 no.1
    • /
    • pp.45-50
    • /
    • 2001
  • Congestion may take place in the ATM network because of high-speed cell transmission features, and cell delay and loss also can be caused by unexpected traffic variation. Thus. traffic control mechanisms are needed. One of them to decrease congestion is the cell shaping. This paper proposes a hybrid type cell shaper composed of a Leaky Bucket with token pool, EWMA with time window, and a spacing control buffer. The simulator BONeS with the ON/OFF traffic source model evaluates the performance of the proposed cell shaping method. Simulation results show that the cell shaping concerning the respective source traffics is adapted to and then controlled on the mean bit rate.

  • PDF

Detection and Parameter Estimation for Jitterbug Covert Channel Based on Coefficient of Variation

  • Wang, Hao;Liu, Guangjie;Zhai, Jiangtao;Dai, Yuewei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1927-1943
    • /
    • 2016
  • Jitterbug is a passive network covert timing channel supplying reliable stealthy transmission. It is also the basic manner of some improved covert timing channels designed for higher undetectability. The existing entropy-based detection scheme based on training sample binning may suffer from model mismatching, which results in detection performance deterioration. In this paper, a new detection method based on the feature of Jitterbug covert channel traffic is proposed. A fixed binning strategy without training samples is used to obtain bins distribution feature. Coefficient of variation (CV) is calculated for several sets of selected bins and the weighted mean is used to calculate the final CV value to distinguish Jitterbug from normal traffic. Furthermore, the timing window parameter of Jitterbug is estimated based on the detected traffic. Experimental results show that the proposed detection method can achieve high detection performance even with interference of network jitter, and the parameter estimation method can provide accurate values after accumulating plenty of detected samples.

Data Aggregation Method Guaranteeing Minimum Traffic in Multi-hop Automatic Meter Reading Networks (다중 홉 원격검침망에서의 최소 트래픽 보장을 위한 데이터 수집기법에 관한 연구)

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.848-857
    • /
    • 2011
  • Due to the advantages of a conveniet, inexpensive installation, flexibility, and scalability, Wireless AMR systems are recently preferred over wired AMR systems. However, a multi-hop supported AMR network, which generally covers large areas, may create energy wastage problem, energy unbalance, and high interference hazard due to a large amount of concurrent-intensive metering data in the network. Therefore in this paper we propose a novel data gathering method which can solve abovementioned problems as well as conserve energy, by reducing the traffic in the network. In addition, the experimental results demonstrate that the proposed scheme shows superior performance to the conventional data transmission method.

Shaping Scheme Using UPC with LB and TJW in ATM Networks (ATM 망에서 LB와 TJW UPC를 이용한 트래픽 쉐이핑)

  • 윤석현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.3
    • /
    • pp.143-148
    • /
    • 2002
  • Congestion may take place in the ATM network because of high-speed cell transmission features, and cell delay and loss also can be caused by unexpected traffic variation. Thus, traffic control mechanisms are needed. One of them to decrease congestion is the Cell shaping. This paper proposes a hybrid type cell shaper composed of a Leaky Bucket with token pool, Tn with time window, and a spacing control buffer. The simulator BONeS with the ON/OFF traffic source model evaluates the performance of the proposed cell shaping method. Simulation results show that the cell shaping concerning the respective source traffics is adapted to and then controlled on the mean bit rate.

  • PDF

CDMA Digital Mobile Communications and Message Security

  • Rhee, Man-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.6 no.4
    • /
    • pp.3-38
    • /
    • 1996
  • The mobile station shall convolutionally encode the data transmitted on the reverse traffic channel and the access channel prior to interleaving. Code symbols output from the convolutional encoder are repeated before being interleaved except the 9600 bps data rate. All the symbols are then interleaved, 64-ary orthogonal modulation, direct-sequence spreading, quadrature spreading, baseband filtering and QPSK transmission. The sync, paging, and forward traffic channel except the pilot channel in the forward CDMA channel are convolutionally encoded, block interleaved, spread with Walsh function at a fixed chip rate of 1.2288 Mcps to provide orthogonal channelization among all code channels. Following the spreading operation, the I and Q impulses are applied to respective baseband filters. After that, these impulses shall be transmitted by QPSK. Authentication in the CDMA system is the process for confirming the identity of the mobile station by exchanging information between a mobile station and the base station. The authentication scheme is to generate a 18-bit hash code from the 152-bit message length appended with 24-bit or 40-bit padding. Several techniques are proposed for the authentication data computation in this paper. To protect sensitive subscriber information, it shall be required enciphering ceratin fields of selected traffic channel signaling messages. The message encryption can be accomplished in two ways, i.e., external encryption and internal encryption.

Predictive Traffic Control Scheme of ABR Service (ABR 서비스를 위한 예측 트래픽 제어모델)

  • 오창윤;임동주;배상현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.307-312
    • /
    • 2000
  • Asynchronous transfer mode(ATM) is flexible to support the various multimedia communication services such as data, voice, and image by applying asynchronous time-sharing and statistical multiplexing techniques to the existing data communication. ATM service is categorized to CBR, VBR, UBR, and ABR according to characteristics of the traffic and a required service qualities. Among them, ABR service guarantees a minimal bandwidth and can transmit cells at a maximum transmission rate within the available bandwidth. To minimize the cell losses in transmission and switching, a feedback information in ATM network is used to control the traffic. In this paper, predictive control algorithms are proposed for the feedback information. When the feedback information takes a long propagation delay to the backward nodes, ATM switch can experience a congestion situation from the queue length increases, and a high queue length fluctuations in time. The control algorithms proposed in this paper provides predictive control model using slop changes of the queue length function and previous data of the queue lengths. Simulation shows the effectiveness result of the proposed control algorithms.

  • PDF