• Title/Summary/Keyword: Traffic network model

Search Result 923, Processing Time 0.027 seconds

A Study on Application of Neural Network using Genetic Algorithm in Container Traffic Prediction (컨테이너물동량 예측에 있어 유전알고리즘을 이용한 인공신경망 적용에 관한 연구)

  • Shin, Chang-Hoon;Park, Soo-Nam;Jeong, Dong-Hun;Jeong, Su-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.187-188
    • /
    • 2009
  • On this study, the artificial neural network, one of the nonlinear forecasting methods, is compared with ARIMA model through performing a forecast of container traffic. The existing studies have been used the rule of thumb in topology design for network which had a great effect on forecasting performance of the artificial neural network. However, this study applied the genetic algorithm, known as the effectively optimal algorithm in the huge and complex sample space, as the alternative.

  • PDF

An Efficient QoS-Aware Bandwidth Re-Provisioning Scheme in a Next Generation Wireless Packet Transport Network (차세대 이동통신 패킷 수송망에서 서비스 품질을 고려한 효율적인 대역폭 재할당 기법)

  • Park, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.30-37
    • /
    • 2006
  • In this paper, we propose a QoS-aware efficient bandwidth re-provisioning scheme in a next generation wireless packet transport network. At the transport network layer, it classifies the traffic of the radio network layer into a real time class and a non-real time class. Using an auto-regressive time-series model and a given packet loss probability, our scheme predicts the needed bandwidth of the non-real time class at every re-provisioning interval. Our scheme increases the system capacity by releasing the unutilized bandwidth of the non-real time traffic class for the real-time traffic class while insuring a controllable upper bound on the packet loss probability of a non-real time traffic class. Through empirical evaluations using the real Internet traffic traces, our scheme is validated that it can increase the bandwidth efficiency while guaranteeing the quality of service requirements of the non-real time traffic class.

Multi-Scaling Models of TCP/IP and Sub-Frame VBR Video Traffic

  • Erramilli, Ashok;Narayan, Onuttom;Neidhardt, Arnold;Saniee, Iraj
    • Journal of Communications and Networks
    • /
    • v.3 no.4
    • /
    • pp.383-395
    • /
    • 2001
  • Recent measurement and simulation studies have revealed that wide area network traffic displays complex statistical characteristics-possibly multifractal scaling-on fine timescales, in addition to the well-known properly of self-similar scaling on coarser timescales. In this paper we investigate the performance and network engineering significance of these fine timescale features using measured TCP anti MPEG2 video traces, queueing simulations and analytical arguments. We demonstrate that the fine timescale features can affect performance substantially at low and intermediate utilizations, while the longer timescale self-similarity is important at intermediate and high utilizations. We relate the fine timescale structure in the measured TCP traces to flow controls, and show that UDP traffic-which is not flow controlled-lacks such fine timescale structure. Likewise we relate the fine timescale structure in video MPEG2 traces to sub-frame encoding. We show that it is possibly to construct a relatively parsimonious multi-fractal cascade model of fine timescale features that matches the queueing performance of both the TCP and video traces. We outline an analytical method ta estimate performance for traffic that is self-similar on coarse timescales and multi-fractal on fine timescales, and show that the engineering problem of setting safe operating points for planning or admission controls can be significantly influenced by fine timescale fluctuations in network traffic. The work reported here can be used to model the relevant characteristics of wide area traffic across a full range of engineering timescales, and can be the basis of more accurate network performance analysis and engineering.

  • PDF

A Scheduling and Synchronization Technique for RAPIEnet Switches Using Edge-Coloring of Conflict Multigraphs

  • Abbas, Syed Hayder;Hong, Seung Ho
    • Journal of Communications and Networks
    • /
    • v.15 no.3
    • /
    • pp.321-328
    • /
    • 2013
  • In this paper, we present a technique for obtaining conflict-free schedules for real-time automation protocol for industrial Ethernet (RAPIEnet) switches. Mathematical model of the switch is obtained using graph theory. Initially network traffic entry and exit parts in a single RAPIEnet switch are identified, so that a bipartite conflict graph can be constructed. The obtained conflict graph is transformed to three kinds of matrices to be used as inputs for our simulation model, and selection of any of the matrix forms is application-specific. A greedy edge-coloring algorithm is used to schedule the network traffic and to solve the minimum coloring problem. After scheduling, empty slots are identified for forwarding the non real-time traffic of asynchronous devices. Finally, an algorithm for synchronizing the schedules of adjacent switches is proposed using edge-contraction and minors. All simulations were carried out using Matlab.

Development of A Network loading model for Dynamic traffic Assignment (동적 통행배정모형을 위한 교통류 부하모형의 개발)

  • 임강원
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.149-158
    • /
    • 2002
  • For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.

A Study on Estimating the Crossing Speed of Mobility Handicapped for the Activation of the Smart Crossing System (스마트횡단시스템 활성화를 위한 교통약자의 횡단속도 추정)

  • Hyung Kyu Kim;Sang Cheal Byun;Yeo Hwan Yoon;Jae Seok Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • The traffic vulnerable, including elderly pedestrians, have a relatively low walking speed and slow cognitive response time due to reduced physical ability. Although a smart crossing system has been developed and operated to improve problem, it is difficult to operate a signal that reflects the appropriate walking speed for each pedestrian. In this study, a neural network model and a multiple regression model-based traversing speed estimation model were developed using image information collected in an area with a high percentage of traffic vulnerability. to support the provision of optimal walking signals according to real-time traffic weakness. actual traffic data collected from the urban traffic network of Paju-si, Gyeonggi-do were used. The performance of the model was evaluated through seven selected indicators, including correlation coefficient and mean absolute error. The multiple linear regression model had a correlation coefficient of 0.652 and 0.182; the neural network model had a correlation coefficient of 0.823 and 0.105. The neural network model showed higher predictive power.

A Study on The Real-time Prediction of Traffic Flow in ATM Network (ATM망에서의 실시간 통화유랑 예측에 관한 연구)

  • Kim, Yun-Seok;Chin, Yong-Ohk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.10
    • /
    • pp.3195-3200
    • /
    • 2000
  • this paper is a stucy onthe preductionof multi-media traffic flow for the realizationof optimum ATM congestion control. In ATM network it is expected that the characteristic of multi-media traffic flow is varied slowly with a time. Fjor the simulation, time-variable multi-media traffic is penerated using possion distribution(connect calls per process time).\, gamma distribution(transmission rate per a call) and exponential distribution(holding time per a call). And using back-propagation neural netwok and proposed tripple neural network, the simulation to predict generaed traffic is executed. From the result,it's capability is shown that the proposed neural network model can be used in the predictionof ATM traffic flow.

  • PDF

Travel Time Forecasting in an Interrupted Traffic Flow by adopting Historical Profile and Time-Space Data Fusion (히스토리컬 프로파일 구축과 시.공간 자료합성에 의한 단속류 통행시간 예측)

  • Yeo, Tae-Dong;Han, Gyeong-Su;Bae, Sang-Hun
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.133-144
    • /
    • 2009
  • In Korea, the ITS project has been progressed to improve traffic mobility and safety. Further, it is to relieve traffic jam by supply real time travel information for drivers and to promote traffic convenience and safety. It is important that the traffic information is provided accurately. This study was conducted outlier elimination and missing data adjustment to improve accuracy of raw data. A method for raise reliability of travel time prediction information was presented. We developed Historical Profile model and adjustment formula to reflect quality of interrupted flow. We predicted travel time by developed Historical Profile model and adjustment formula and verified by comparison between developed model and existing model such as Neural Network model and Kalman Filter model. The results of comparative analysis clarified that developed model and Karlman Filter model similarity predicted in general situation but developed model was more accurate than other models in incident situation.

The Study on the Performance Evaluation of IPTV according to the increase of network traffic on the Internet Environment (인터넷환경에서 트래픽증가에 따른 IPTV 성능평가에 관한 연구)

  • Cho, Tae-Kyung
    • Journal of Digital Convergence
    • /
    • v.13 no.11
    • /
    • pp.179-185
    • /
    • 2015
  • In this paper, we research the IPTV that is the convergence technique of TV and network technique and performed the performance evaluation of picture quality of IPTV in the situation of increasing the network traffic in the Internet environment. To do this, we constructed the mock Internet network similar to the real Internet environment and measured the quality of received video using V-Factor model according to the increase of network traffic, and analyzed the result of the experiment. Making use of the result of this paper for the threshold value of V-Factor, the measured factor of network performance, the measured factor of video performance in the watchable IPTV video quality.

Analysis and Modeling of Traffic at Ntopia Subscriber Network of Korea Telecom (KT의 Ntopia가입자 망 트래픽 분석 및 모델링)

  • 주성돈;이채우
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.5
    • /
    • pp.37-45
    • /
    • 2004
  • As Internet technologies are mature, many new applications that are different characteristics are emerging. Recently we see wide use of P2P(Peer to Peer) applications of which traffic shows different statistical characteristics compared with traditional application such as web(HTTP) and FTP(File Transfer Protocol). In this paper, we measured subscriber network of KT(Korea Telecom) to analyze P2P traffic characteristics. We show flow characteristics of measured traffic. We also estimate Hurst parameter of P2P traffic and compare self-similarity with web traffic. Analysis results indicate that P2P traffic is much bustier than web traffic and makes both upstream traffic and downstream traffic be symmetric. To predict parameters related QoS such as packet loss and delays we model P2P traffic using two self-similar traffic models and predict both loss probability and mm delay then compare their accuracies. With simulation we show that the self-similar traffic models we derive predict the performance of P2P traffic accurately and thus when we design a network or evaluate its performance, we can use the P2P traffic model as reference input traffic.