• Title/Summary/Keyword: Traffic monitoring and analysis

Search Result 232, Processing Time 0.025 seconds

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

Analysis of a NEMO enabled PMIPv6 based Mobility Support for an Efficient Information Transmission

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.4
    • /
    • pp.197-205
    • /
    • 2018
  • Nowadays, wireless sensor networks (WSNs) have been widely adopted in structural health monitoring (SHM) systems for social overhead capital (SOC) public infrastructures. Structural health information, environmental disturbances and sudden changes of weather conditions, damage detections, and external load quantizing are among the capabilities required of SHM systems. These information requires an efficient transmission with which an efficient mobility management support for wireless networks can provide. This paper deals with the analysis of mobility management schemes in order to address the real-time requirement of data traffic delivery for critical SHM information. The host-based and network-based mobility management protocols have been identified and the advantages of network mobility (NEMO) enabled Proxy Mobile Internet Protocol version 6 (PMIPv6) have been leveraged in order to address the SHM information transmission needs. The scheme allows an efficient information transmission as it improves the handover performance due to shortened handover latency as well as reduced signaling overhead.

A New Cross-Layer QoS-Provisioning Architecture in Wireless Multimedia Sensor Networks

  • Sohn, Kyungho;Kim, Young Yong;Saxena, Navrati
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5286-5306
    • /
    • 2016
  • Emerging applications in automation, medical imaging, traffic monitoring and surveillance need real-time data transmission over Wireless Sensor Networks (WSNs). Guaranteeing Quality of Service (QoS) for real-time traffic over WSNs creates new challenges. Rapid penetration of smart devices, standardization of Machine Type Communications (MTC) in next generation 5G wireless networks have added new dimensions in these challenges. In order to satisfy such precise QoS constraints, in this paper, we propose a new cross-layer QoS-provisioning strategy in Wireless Multimedia Sensor Networks (WMSNs). The network layer performs statistical estimation of sensory QoS parameters. Identifying QoS-routing problem with multiple objectives as NP-complete, it discovers near-optimal QoS-routes by using evolutionary genetic algorithms. Subsequently, the Medium Access Control (MAC) layer classifies the packets, automatically adapts the contention window, based on QoS requirements and transmits the data by using routing information obtained by the network layer. Performance analysis is carried out to get an estimate of the overall system. Through the simulation results, it is manifested that the proposed strategy is able to achieve better throughput and significant lower delay, at the expense of negligible energy consumption, in comparison to existing WMSN QoS protocols.

Overlap Removal and Background Updating for Associative Tracking of Multiple Vehicles (다중 차량 연관 추적을 위한 겹침 제거 및 배경영상 갱신)

  • Lim, Jun-Sik;Kim, Soo-Hyung;Lee, Chil-Woo;Lee, Myung-Eun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this paper, we propose a vehicle tracking method that can be applied in the intelligent traffic information system. The proposed method mainly consists of two steps: overlap removal and background updating. In order to remove overlap, we detect the overlap based on the location of the vehicle from successive images. Background updating is to calculate a background using statistical analysis of successive images. We collected a set of test images from the traffic monitoring system and experimented. The experimental results show more than 96% of tracking accuracy.

Routing optimization algorithm for logistics virtual monitoring based on VNF dynamic deployment

  • Qiao, Qiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1708-1734
    • /
    • 2022
  • In the development of logistics system, the breakthrough of important technologies such as technology platform for logistics information management and control is the key content of the study. Based on Javascript and JQuery, the logistics system realizes real-time monitoring, collection of historical status data, statistical analysis and display, intelligent recommendation and other functions. In order to strengthen the cooperation of warehouse storage, enhance the utilization rate of resources, and achieve the purpose of real-time and visual supervision of transportation equipment and cargo tracking, this paper studies the VNF dynamic deployment and SFC routing problem in the network load change scenario based on the logistics system. The BIP model is used to model the VNF dynamic deployment and routing problem. The optimization objective is to minimize the total cost overhead generated by each SFCR. Furthermore, the application of the SFC mapping algorithm in the routing topology solving problem is proposed. Based on the concept of relative cost and the idea of topology transformation, the SFC-map algorithm can efficiently complete the dynamic deployment of VNF and the routing calculation of SFC by using multi-layer graph. In the simulation platform based on the logistics system, the proposed algorithm is compared with VNF-DRA algorithm and Provision Traffic algorithm in the network receiving rate, throughput, path end-to-end delay, deployment number, running time and utilization rate. According to the test results, it is verified that the test results of the optimization algorithm in this paper are obviously improved compared with the comparison method, and it has higher practical application and promotion value.

A Methodology for Evaluating Vehicle Driving Safety based on the Analysis of Interactions With Roads and Adjacent Vehicles (도로 및 인접차량과의 상호작용분석을 통한 차량의 주행안전성 평가기법 개발 연구)

  • PARK, Jaehong;OH, Cheol;YUN, Dukgeun
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.116-128
    • /
    • 2017
  • Traffic accidents can be defined as a physical collision event of vehicles occurred instantaneously when drivers do not perceive the surrounding vehicles and roadway environments properly. Therefore, detecting the high potential events that cause traffic accidents with monitoring the interactions among the surroundings continuously by driver is the prerequisite for prevention the traffic accidents. For the analysis, basic data were collected to analyze interactions using a test vehicle which is equipped the GPS(Global Positioning System)-IMU(Inertial Measurement Unit), camera, radar and RiDAR. From the collected data, highway geometric information and the surrounding traffic situation were analyzed and then safety evaluation algorithm for driving vehicle was developed. In order to detect a dangerous event of interaction with surrounding vehicles, locations and speed data of surrounding vehicles acquired from the radar sensor were used. Using the collected data, the tangent and curve section were divided and the driving safety evaluation algorithm which is considered the highway geometric characteristic were developed. This study also proposed an algorithm that can assess the possibility of collision against surrounding vehicles considering the characteristics of geometric road structure. The methodology proposed in this study is expected to be utilized in the fields of autonomous vehicles in the future since this methodology can assess the driving safety using collectible data from vehicle's sensors.

Analysis of the Noise Variation on Land Use Using Data of Noise Monitoring Network (소음 측정망 자료를 이용한 용도지역별 소음변화 분석)

  • Eo, Jae-Hoon;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.91-96
    • /
    • 2010
  • Depending on the transportation, information and communication technology development, urban such as the superficial spreading and the changing structure of internal space of the organism has various shape and speed of the changes. In particular, the main cause of these changes is the development of the traffic and this transport system is having a close connection with land use. This study presents the results about characteristics and changes of noise on each land use zoning. Therefore the result shows that the measured data could be used to evaluate noise distributions on urban land use and then make up the basis process for producing noise maps of land use zoning.

Air Quality Evaluation with Passive Samplers for Large Cities (Passive Sampler를 이용한 대도시의 대기질 평가)

  • Jeon, Eui-Chan;Kim, Shin-Do;Choi, Kum-Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.83-88
    • /
    • 1998
  • Filter badge type sampler has not been widely used to evaluate air quality over large cities in Korea while it can be successfully used for multi-point sampling and analysis. We evaluated the passive sampler as a new tool to monitor air quality over large cities. We latticed Metropolitan Seoul into $2{\times}2Km$ to give 136 points. $NO_2$ concentrations were measured at all the points in the Spring and Summer of 1997. According to the passive sampler data, natural green zones generally recorded lower $NO_2$ concentrations than major streets and traffic congestion areas. Passive samplers with abundant 136 points gave more detailed picture of $NO_2$ distribution while auto-monitoring network did not clearly provide the characteristics of local land use. Also, passive samplers gave 15% higher values than auto-monitoring network. The correlation between the two values appears very high judging from the regression slope of 0.92 and correlation coefficient of 0.91. This study clearly demonstrates the effectiveness of the passive sampler as a tool to monitor air quality over large cities.

  • PDF

Risk Analysis and Monitoring Model of Urban SCADA Network Infrastructure (도시 기반시설 SCADA 망의 위험분석 및 모니터링 모델 연구)

  • Kim, Wan-Jib;Lee, Kyung-Ho;Kim, Huy-Kang;Youm, Heung-Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.6
    • /
    • pp.67-81
    • /
    • 2011
  • In recently years, there are cyber-weapon aim to national infrastructure such as 'stuxnet'. Security experts of the world are paying attention to this phenomenon. The networks which controls traffic, subway, waterworks of the city are safe from threats such as computer virus, malware, because the networks were built on closed-networks. However, it's about time to develop countermeasure for the cyber-weapon. In this paper, we review status-quo of the control systems for metropolitan infrastructure and analyze the risk of industrial control system in SCADA(Supervisory Control And Data Acquisition) network. Finally, we propose a security model for control systems of metropolitan infrastructure.

Forensic STR Analysis of Mixed Chimerism after Allogeneic Bone Marrow Transplantation

  • Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.16 no.3
    • /
    • pp.193-196
    • /
    • 2010
  • Multiplex PCR-based short tandem repeat (STR) analysis is considered as a good tool for monitoring bone marrow engraftment after sex-mismatched allogeneic transplantation and provides a sensitive and accurate assessment of the contribution of both donor and/or recipient cells in post-transplantation specimens. Forensic STR analysis and quantitative real time PCR are used to determine the proportion of donor versus recipient each contained within the total DNA. The STR markers were co-amplified in a single reaction by using commercial $PowerPlex^{(R)}$ 16 system and $AmpFISTR^{(R)}$ $Identifiler^{(R)}$ / $Yfiler^{(R)}$ PCR amplification kits. Separation of the PCR products and fluorescence detection were performed by ABI $PRIS^{(R)}$ 3100 Genetic Analyzer with capillary electrophoresis. The $GeneMapper^{TM}$ ID software were used for size calling and analysis of STR profiles. Extracted DNA was quantified by the $Quantifiler^{TM}$ Human DNA / Y Human Male DNA Quantification Kit The intent of this study was to analyze the ratio of donor versus recipient cells in the post-transplant peripheral blood, spleen, lung and kidney specimens. Specimens were taken from the traffic accident male victim who had been engrafted from bone marrow female donor. Blood and spleen specimens displayed female donor DNA profile. Kidney specimen showed male recipient DNA profile. Interestingly, lung tissue showed mixed profiles. The findings of this study indicate that the forensic STR analysis using fluorescence labeling PCR combined with capillary electrophoresis is quick and reliable enough to assess the ratio of donor versus recipient cells and to monitor the mixed chimeric patterns.