• Title/Summary/Keyword: Traffic information processing

Search Result 1,257, Processing Time 0.024 seconds

Construction of a Remote Monitoring System in Smart Dust Environment

  • Park, Joonsuu;Park, KeeHyun
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.733-741
    • /
    • 2020
  • A smart dust monitoring system is useful for obtaining information on rough terrain that is difficult for humans to access. One of ways to deploy sensors to gather information in smart dust environment is to use an aircraft in the Amazon rainforest to scatter an enormous amount of small and cheap sensors (or smart dust devices), or to use an unmanned spacecraft to throw the sensors on the moon's surface. However, scattering an enormous amount of smart dust devices creates the difficulty of managing such devices as they can be scattered into inaccessible areas, and also causes problems such as bottlenecks, device failure, and high/low density of devices. Of the various problems that may occur in the smart dust environment, this paper is focused on solving the bottleneck problem. To address this, we propose and construct a three-layered hierarchical smart dust monitoring system that includes relay dust devices (RDDs). An RDD is a smart dust device with relatively higher computing/communicating power than a normal smart dust device. RDDs play a crucial role in reducing traffic load for the system. To validate the proposed system, we use climate data obtained from authorized portals to compare the system with other systems (i.e., non-hierarchical system and simple hierarchical system). Through this comparison, we determined that the transmission processing time is reduced by 49%-50% compared to other systems, and the maximum number of connectable devices can be increased by 16-32 times without compromising the system's operations.

An Effective Training Pattern Processing Method for ATM Connection Admission Control Using the Neural Network (신경회로망을 이용한 ATM 연결 수락 제어를 위한 효율적인 학습패턴 처리 기법)

  • Kwon, Oh-Jun;Jeon, Hyoung-Goo;Kwon, Soon-Kak;Kim, Tai-Suk;Lee, Jeong-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.173-180
    • /
    • 2002
  • The virtual cell loss rate was introduced for the training pattern of the neural network in the VOB(Virtual Output Buffer) model. The VOB model shows that the neural network can find the connection admission boundary without the real cell loss rate. But the VOB model tends to overestimate the cell loss rate, so the utilization of network is low. In this paper, we uses the reference curve of the cell loss rate, which contains the information about the cell loss rate at the connection admission boundary. We process the patterns of the virtual cell loss rate using the reference curve, We performed the simulation with two major ATM traffic classes. One is On-Off traffic class that has the traffic characteristic of LAN data and other is Auto-Regressive traffic class that has the traffic characteristic of a video image communication.

Shadow Classification for Detecting Vehicles in a Single Frame (단일 프레임에서 차량 검출을 위한 그림자 분류 기법)

  • Lee, Dae-Ho;Park, Young-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.991-1000
    • /
    • 2007
  • A new robust approach to detect vehicles in a single frame of traffic scenes is presented. The method is based on the multi-level shadow classification, which has been shown to have the capability of extracting correct shadow shapes regardless of the operating conditions. The rationale of this classification is supported by the fact that shadow regions underneath vehicles usually exhibit darker gray level regardless of the vehicle brightness and illuminating conditions. Classified shadows provide string clues on the presence of vehicles. Unlike other schemes, neither background nor temporal information is utilized; thereby the performance is robust to the abrupt change of weather and the traffic congestion. By a simple evidential reasoning, the shadow evidences are combined with bright evidences to locate correct position of vehicles. Experimental results show the missing rate ranges form 0.9% to 7.2%, while the false alarm rate is below 4% for six traffic scenes sets under different operating conditions. The processing speed for more than 70 frames per second could be obtained for nominal image size, which makes the real-time implementation of measuring the traffic parameters possible.

Performance Improvement of Traffic Identification by Categorizing Signature Matching Type (시그니쳐 매칭 유형 분류를 통한 트래픽 분석 시스템의 처리 속도 향상)

  • Jung, Woo-Suk;Park, Jun-Sang;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1339-1346
    • /
    • 2015
  • The traffic identification is a preliminary and essential step for stable network service provision and efficient network resource management. While a number of identification methods have been introduced in literature, the payload signature-based identification method shows the highest performance in terms of accuracy, completeness, and practicality. However, the payload signature-based method's processing speed is much slower than other identification method such as header-based and statistical methods. In this paper, we first classifies signatures by matching type based on range, order, and direction of packet in a flow which was automatically extracted. By using this classification, we suggest a novel method to improve processing speed of payload signature-based identification by reducing searching space.

A Fuzzy Traffic Controller with Asymmetric Membership Functions (비대칭적인 소속 함수를 갖는 퍼지 교통 제어기)

  • Kim, Jong-Wan;Choi, Seung-Kook
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2485-2492
    • /
    • 1997
  • Nowadays the traffic conditions have been getting worse due to continuous increase in the number of vehicles. So it has become more important to manage traffic signal lights efficiently. Recently fuzzy logic is introduced to control the cycle time of traffic lights adaptively. Conventional fuzzy logic controller adjusts the extension time of current green phase by using the fuzzy input variables such as the number of entering vehicles at the green light and the number of waiting vehicle during the red light. However this scheme is inadequate for an intersection with variable traffic densities. In this paper, a new FLC with asymmetric membership functions that reflects more exactly traffic flows than other FLCs with symmetric ones regardless of few control rules is propsed. The effectiveness of the proposed method was shown through simulation of a single intersection. The experimental results yielded the superior performance of the proposed FLC in terms of the average delay time, the number of passed vehicles, and the degree of saturation.

  • PDF

Robust Traffic Monitoring System by Spatio-Temporal Image Analysis (시공간 영상 분석에 의한 강건한 교통 모니터링 시스템)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1534-1542
    • /
    • 2004
  • A novel vision-based scheme of extracting real-time traffic information parameters is presented. The method is based on a region classification followed by a spatio-temporal image analysis. The detection region images for each traffic lane are classified into one of the three categories: the road, the vehicle, and the shadow, using statistical and structural features. Misclassification in a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. Since only local images of detection regions are processed, the real-time operation of more than 30 frames per second is realized without using dedicated parallel processors, while ensuring detection performance robust to the variation of weather conditions, shadows, and traffic load.

On-Line Travel Time Estimation Methods using Hybrid Neuro Fuzzy System for Arterial Road (검지자료합성을 통한 도시간선도로 실시간 통행시간 추정모형)

  • 김영찬;김태용
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.171-182
    • /
    • 2001
  • Travel Time is an important characteristic of traffic conditions in a road network. Currently, there are so many road users to get a unsatisfactory traffic information that is provided by existing collection systems such as, Detector, Probe car, CCTV and Anecdotal Report. This paper presents the results achieved with Data Fusion Model, Hybrid Neuro Fuzzy System for on - line estimation of travel times using RTMS(Remote Traffic Microwave Sensor) and Probe Data in the signalized arterial road. Data Fusion is the most important process to compose the various of data which can present real value for traffic situation and is also the one of the major process part in the TIC(Traffic Information Center) for analyzing and processing data. On-line travel time estimation methods(FALEM) on the basis of detector data has been evaluated by real value under KangNam Test Area.

  • PDF

Development of a Vehicle Tracking Algorithm using Automatic Detection Line Calculation (검지라인 자동계산을 이용한 차량추적 알고리즘 개발)

  • Oh, Ju-Taek;Min, Joon-Young;Hur, Byung-Do;Kim, Myung-Seob
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.4
    • /
    • pp.265-273
    • /
    • 2008
  • Video Image Processing (VIP) for traffic surveillance has been used not only to gather traffic information, but also to detect traffic conflicts and incident conditions. This paper presents a system development of gathering traffic information and conflict detection based on automatic calculation of pixel length within the detection zone on a Video Detection System (VDS). This algorithm improves the accuracy of traffic information using the automatic detailed line segmentsin the detection zone. This system also can be applied for all types of intersections. The experiments have been conducted with CCTV images, installed at a Bundang intersection, and verified through comparison with a commercial VDS product.

Research on OS fingerprinting Method for Real-time Traffic Analysis System (실시간 트래픽 분석을 위한 운영체제 판별 방법에 관한 연구)

  • Lee, Hyun-Shin;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.443-450
    • /
    • 2011
  • The Internet has become an essential part in our modern life by providing useful information. So, the volume of Internet traffic has been increasing rapidly, which emphasizes the importance of network traffic analysis for effective network operation and management. Signature based analysis have been commonly used, but it is shown that the increase of signatures due to the increase of applications causes the performance degradation of real-time traffic analysis on high-speed network links. In this paper, we propose OS fingerprinting method for real-time traffic analysis. The previous problems can be solved by utilizing the OS information. The OS fingerprinting method for real-time traffic analysis, proposed in this paper, conducts under passive mode, and improves the limitation of a previous method such as low completeness and accuracy. In this paper, we enlarged an input data to improve completeness, and used the User-Agent field in HTTP packet to extract various OS signatures. Also, we changed an input data from packet to flow to improve accuracy.

Traffic Sign Recognition Using Color Information and Error Back Propagation Algorithm (컬러정보와 오류역전파 알고리즘을 이용한 교통표지판 인식)

  • Bang, Gul-Won;Kang, Dea-Wook;Cho, Wan-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.809-818
    • /
    • 2007
  • In this thesis, the color information is used to extract the traffic sign territory, and for recognizing the extracted image, it proposes the traffic sign recognition system that applies the error back propagation algorithm. The proposed method analyzes the color of traffic sign to extract and recognize the possible territory of traffic sign. The method of extracting the possible territory is to use the characteristics of YUV, YIQ, and CMYK color space from the RGB color space. Morphology uses the geometric characteristics of traffic sign to make the image segmentation. The recognition of traffic signs can be recognized by using the error back propagation algorithm. As a result of the experiment, the proposed system has proven its outstanding capability in extraction and recognition of candidate territory without the influence of differences in lighting and input image in various sizes.