Abstract
In this thesis, the color information is used to extract the traffic sign territory, and for recognizing the extracted image, it proposes the traffic sign recognition system that applies the error back propagation algorithm. The proposed method analyzes the color of traffic sign to extract and recognize the possible territory of traffic sign. The method of extracting the possible territory is to use the characteristics of YUV, YIQ, and CMYK color space from the RGB color space. Morphology uses the geometric characteristics of traffic sign to make the image segmentation. The recognition of traffic signs can be recognized by using the error back propagation algorithm. As a result of the experiment, the proposed system has proven its outstanding capability in extraction and recognition of candidate territory without the influence of differences in lighting and input image in various sizes.
본 논문에서는 컬러정보를 이용하여 교통표지판 영역을 추출하고, 추출된 이미지의 인식을 위해 오류 역전파 학습알고리즘을 적용한 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판의 후보영역을 추출한다. 후보영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 영역을 분할하고, 교통표지판 인식은 학습이 가능한 오류역전파 학습알고리즘을 이용하여 인식한다. 실험결과 제안된 시스템은 다양한 크기의 입력영상과 조명의 차이에 영향을 받지 않고 후보영역 추출과 인식에 우수한 성능이 입증되었다.