Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.7
/
pp.1726-1748
/
2024
Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.
Purpose - We live in a world of constant change and competition. Many airports have specific competitiveness goals and strategies for achieving and maintaining them. The global economic recession, financial crises, and rising oil prices have resulted in an increasingly important role for facility investment and renewal and the implementation of appropriate policies in ensuring the competitive advantage for airports. It is thus important to analyze the factors that enhance efficiency and productivity for an airport. This study aims to determine the efficiency levels of 20 major airports in East Asia, Europe, and North America. Further, this study also suggests suitable policies and strategies for their development. Research design, data, and methodology - This paper employs the DEA-CCR, DEA-BCC, and DEA-Malmquist production index analysis models to determine airport efficiency. The study uses data on the efficiency and productivity of the world's leading airports between 2006 and 2010. The input variables include the airport size, the number of runways, the size of passenger terminals, and the size of cargo terminals. The output variables include the annual number of passengers and the annual cargo volume. The study uses basic data from the 2010 World Airport Traffic Report (ACI). The world's top 20 airports (as rated by the ACI report) are investigated. The study uses the expanded DEA Model and the Super Efficiency Model to identify the most effective airports among the top 20. The Malmquist productivity index analysis is used to measure airport effectiveness. Results - This study analyzes longitudinal and cross-sectional data on the world's top 20 airports covering 2006 to 2010. A CCR analysis shows that the most efficient airports in 2010 were Gatwick Airport (LGW), Zurich Airport (ZRH), Vienna Airport (VIE), Leonardo da Vinci Fiumicino Airport (FCO), Los Angeles International Airport (LAX), Seattle-Tacoma Airport (SEA), San Francisco Airport (SFO), HongKong Airport (HKG), Beijing Capital International Airport (PEK), and Shanghai Pudong Airport (PVG). We find that changes in airport productivity are affected more by technical factors than by airport efficiency. Conclusions - Based on the study results, we offer four airport development proposals. First, a benchmark airport needs to be identified. Second, inefficiency must be reduced and high-cost factors need to be managed. Third, airport operations should be enhanced through technical innovation. Finally, scientific demand forecasting and facility preparation must become the focus of attention. This paper has some limitations. Because the Malmquist productivity index is based on the hypothesis of the, the identified production change could be over- or under-estimated. Further, as DEA estimates the relative efficiency. It also cannot generalize to include all airport conditions because the variables are limited. To measure airport productivity more accurately, other input variables and environmental variables such as financial and policy factors should be included.
The conventional four-step travel demand model is still widely used as the state-of-practice in most transportation planning agencies even though it does not provide reliable estimates of travel demand. In order to improve the accuracy of travel demand estimation, implementing an alternative approach would be critical as much as acquiring reliable socioeconomic and travel data. Recently, the role of travel demand model is diverse to satisfy the needs of microscopic analysis regarding various policies of travel demand management and traffic operations. In this context, the activity-based approach for travel demand estimation is introduced and a case study of developing a spatial-temporal activity presence-based approach that estimates travel demand through forecasting number of people present at certain place and time is accomplished. Results show that the spatial-temporal activity presence-based approach provides reliable estimates of both number of people present and trips actually people made. It is expected that the proposed approach will provide better estimates and be used in not only long-term transport plans but short-term transport impact studies with respect to various transport policies. Finally, in order to introduce the spatial-temporal activity presence-based approach, the data such as activity-based travel diary and land use based on geographic information system are essential.
Activity-based models analyze individuals' various daily activities that are identified as a decision-making unit for transportation planning. In other words, it is the model that determines the types of activities according to the social, economic and situational characteristics of the groups with the same activity patterns and predicts individuals' activity time, distance, spatial movement and transportation mode. The activity-based model is a method of estimating more efficient and realistic demand in transportation forecasting because traffic is regarded as a complex decision-making process that an individual and other people participate in. In this paper, we grasp the factors affecting choice behavior of activity pattern and analyze choice behavior of activity pattern based on multi-dimensional characteristic of each person. First, we classify activity types of reviewing the trip chain and activity purpose. Next, we identified preferable activity types using complicated characteristics of main agent of activity. We concluded that choice behavior of activity pattern is dependent on complex characteristics of each agent, and further multi-dimensional characteristics of each person are affected over the whole decision process of activity schedule.
In this study, a model of compensation and amendment of forecasted travel demand was developed to calculate the range of values depends on the changes in the risk factors, selecting factors that might affect traffic demand changes among risk factors. Selected factors are as follows: influenced area population, the number of registrated vehicle per person, ratio of service industry workers, and city intervals. Then this model is applied to six routes of expressway and the calculated value were compensated with error rate being reflected on each quartile value with respect to influenced area population (200,000 people standards). Result from appling developed model to Cheongwon-Sangju expressway suggests that the model could compensate the error rate by more than 50%, which in turn validate the effectiveness of the model developed. Some limitations and future research agenda have also been identified.
Journal of the Korean Association of Geographic Information Studies
/
v.16
no.2
/
pp.114-128
/
2013
Rapid industrialization and economic growth have led to serious problems including reduced open space, environmental degradation, traffic congestion, and urban sprawl. These problems have been exacerbated by the absence of effective conservation and governance, and have resulted in various social conflicts. In response to these challenges, many scholar and government hope to achieve sustainable development through the establishment and management of environment-friendly planning. For this purpose, we would like to analyze functional change for ecosystem by future land-use/cover changes in South Korea. Toward this goal, we predicted land-use/cover changes from 2010 to 2060 using the future population of Statistics Korea and urban growth probability map created by logistic regression analysis and analyzed ecosystem service value using costanza's coefficient. In the case of scenario 1, ecosystem service value represented 6,783~7,092 million USD. In the case of scenario 2, ecosystem represented 6,775~7,089 million USD, 2.9~7.6 million USD decreased compared by scenario 1. This was the result of area reduction for farmland and wetland which have high environmental value relatively according to urban growth by development point of view. The results of this analysis indicate that environmentally sustainable systems and urban development must be applied to achieve sustainable development and environmental protection. Quantitative analysis of environmental values in accordance with environmental policy can help inform the decisions of policy makers and urban developers. Furthermore, forecasting urban growth based on future demand will provide more precise predictive analysis.
The container shipping sector is an important international logistics operation that connects open economies. Freight rates rapidly change as the market fluctuates, and staff related to the shipping market are interested in factors that determine freight rates in the container market. This study uses the Vector Error Correction Model(VECM) to estimate the impact of factors affecting container freight rates. This study uses data published by Clarksons. The analysis results show a 4.2% increase in freight rates when world container traffic increases at 1.0%, a 4.0% decrease in freight rates when volume of container carriers increases by 1.0%, a 0.07% increase in freight rates when bunker price increases by 1.0%, and a 0.04% increase in freight rates accompanying 1.0% increase in libor interests rates. In addition, if the current freight rate is 1.0% higher than the long-term equilibrium rate, the freight rate will be reduced by 3.2% in the subsequent term. In addition, if the current freight rate is 1.0% lower than the long-term equilibrium rate, the freight rate will decrease by 0.12% in the following term. However, the adjusting power in a period of recession is not statistically significant which means that the pressure of freight rate increase in this case is neglectable. This research is expected to contribute to the utilization of scientific methods in forecasting container freight rates.
KSCE Journal of Civil and Environmental Engineering Research
/
v.34
no.2
/
pp.549-559
/
2014
The rapid expansion of cities led to the shortage of housing in urban areas. The government compensated for this shortage through large scale residential developments that increased the housing supply. The supply of condominium apartments remains above 83% of the entire housing supply, and the proportion of apartments are at a steady increase, at about 50%. Due to the increase, illegally parked cars resulting from the shortage of parking spaces within the apartment complex have become increasingly problematic as they block the transit of emergency vehicles, and heighten the tension among neighboring residents in obtaining a parking space. Especially, the future residents are considered to plan the parking based on the estimated demand for parking. However, the parking unit method utilized to estimate the parking demand accounts for the exclusive use of space, which is believed to be far from the parking demands in reality. The reason for this discrepancy is that, as the number of households decrease, and area of exclusive space is expanded, the planned parking increases. On the other hand, when the number of households increase, and the area of exclusive space is reduced, the planned parking decreases, thus methods to recalculate the parking units based on estimated parking demand is an urgent concern. To estimate the parking units based on condominium apartments, this study first examined the existing research literature, and appointed the field of investigation to collect the necessary data. In addition, field study data and surveys collected and analyzed, in order to identify the problems underlying parking units, and problems regarding the current traffic impact assessment parking unit calculation method were deduced. Through identifying the influential factors on parking demand estimates, and performing a factorial analysis based on the collected data, the variables were selected in relation to the parking demand estimates, to develop the parking unit estimate model. Finally, through comparing and verifying the existing traffic impact assessment parking unit estimate against the newly developed model using collected data, a far more realistic parking unite estimate was suggested, reflecting the characteristics of the residents. The parking unit estimate model developed in this study is anticipated to serve as the guidelines for future parking lot legislature, as wel as the basis to provide a more realistic estimate of parking demands based on the resident characteristics of an apartment complex.
Despite the nationwide COVID-19 lockdown in China since January 23, 2020, haze days with high PM10 levels of 88-98 ㎍ m-3 occurred on February 1 and 2, 2020. During these haze days, the East Asian region was affected by a warm and stagnant air mass with positive air temperature anomalies and negative zonal wind anomalies at 850 hPa. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) was used to analyze the variation of regional PM10 aerosol transport in Korea due to decreased anthropogenic emissions in East Asia. The base experiment (BASE), which applies the basic anthropogenic emissions in the WRF-Chem model, and the control experiment (CTL) applied by reducing the anthropogenic emission to 50%, were used to assess uncertainty with ground-based PM10 measurements in Korea. The index of agreement (IOA) for the CTL simulation was 0.71, which was higher than that of BASE (0.67). A statistical analysis of the results suggests that anthropogenic emissions were reduced during the COVID-19 lockdown period in China. Furthermore, BASE and CTL applied to zero-out anthropogenic emissions outside Korea (BASE_ZEOK and CTL_ZEOK) were used to analyze the variations of regional PM10 aerosol transport in Korea. Regional PM10 transport in CTL was reduced by only 10-20% compared to BASE. Synthetic weather variables may be another reason for the non-linear response to changes in the contribution of regional transport to PM10 in Korea with the reduction of anthropogenic emissions in East Asia. Although the regional transport contribution of other inorganic aerosols was high in CTL (80-90%), sulfate-nitrate-ammonium (SNA) aerosols showed lower contributions of 0-20%, 30-60%, and 30-60%, respectively. The SNA secondary aerosols, particularly nitrates, presumably declined as the Chinese lockdown induced traffic.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.