• Title/Summary/Keyword: Traffic forecasting

Search Result 229, Processing Time 0.025 seconds

Hybrid CSA optimization with seasonal RVR in traffic flow forecasting

  • Shen, Zhangguo;Wang, Wanliang;Shen, Qing;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4887-4907
    • /
    • 2017
  • Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.

Development of Traffic Accident Forecasting Model in Pusan (부산시 교통사고예측모형의 개발)

  • 이일병;임현정
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.3
    • /
    • pp.103-122
    • /
    • 1992
  • The objective of this research is to develop a traffic accident forecasting model using traffic accident data in pusan from 1963 to 1991 and then to make short-term forecasts('93~'94) of traffic accidents in pusan. In this research, several forecasting models are developed. They include a multiple regression model, a time-series ARIMA model, a Logistic curve model, and a Gompertz curve model. Among them, the model which shows the most significance in forecasting accuracy is selected as the traffic accident forecasting model. The results of this research are as followings. 1. The existing model such as Smeed model which was developed for foreign countries shows only 47.8% explanation for traffic accident deaths in Korea. 2. A nonliner regression model ($R^2$=0.9432) and a Logistic curve model are appeared to be th gest forecasting models for the number of traffic accidents, and a Logistic curve model shows th most significance in predicting the accident deaths and injuries. 3. The forecasting figures of the traffic accidents in pusan are as followings: . In 1993, 31, 180 accidents are predicted to happen, and 430 persons are predicted to be deaths and 29, 680 persons are predicated to be injuries. . In 1994, 33, 710 accidents are predicted to happen, and 431.persons are predicted to be deat! and 30, 510 persons are predicted to be injuried. Therefore, preventive measures against traffic accidents are certainly required.

  • PDF

Forecasting the Demand of Railroad Traffic using Neural Network (신경망을 이용한 철도 수요 예측)

  • Shin, Young-Geun;Jung, Won-Gyo;Park, Sang-Sung;Jang, Dong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1931-1936
    • /
    • 2007
  • Demand forecasting for railroad traffic is fairly important to establish future policy and plan. The future demand of railroad traffic can be predicted by analyzing the demand of air, marine and bus traffic which influence the demand of railroad traffic. In this study, forecasting the demand of railroad traffic is implemented through neural network using the demand of air, marine and bus traffic. Estimate accuracy of the demand of railroad traffic was shown about 84% through neural net model proposed.

  • PDF

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity (장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구)

  • Sohn, H.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.1053-1061
    • /
    • 2013
  • In this paper, we propose the time series forecasting models for internet traffic with long memory and heteroscedasticity. To control and forecast traffic volume, we first introduce the traffic forecasting models which are determined by the volatility and heteroscedasticity of the traffic. We then analyze and predict the heteroscedasticity and the long memory properties for forecasting traffic volume. Depending on the characteristics of the traffic, Fractional ARIMA model, Fractional ARIMA-GARCH model are applied and compared with the MAPE(Mean Absolute Percentage Error) Criterion.

Road Maintenance Planning with Traffic Demand Forecasting (장래교통수요예측을 고려한 도로 유지관리 방안)

  • Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.47-57
    • /
    • 2016
  • PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.

Frequency Forecasting Model for Next Wireless Multimedia Services (멀티미디어 이동통신서비스를 위한 주파수 수요예측 모형)

  • Jang, Hee-Seon;Han, Sung-Su;Yeo, Jae-Hyun;Choi, Sung-Ho
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.333-342
    • /
    • 2005
  • In this paper, we propose an efficient forecasting methodology of the mid and long-term frequency demand in Korea. The methodology consists of the following three steps: classification of basic service group, calculation of effective traffic, and frequency forecasting. Based on the previous studies, we classify the services into wide area mobile, short range radio, fixed wireless access and digital video broadcasting in the step of the classification of basic service group. For the calculation of effective traffic, we use the measures of erlang and bps. The step of the calculation of effective traffic classifies the user and basic application, and evaluates the effective traffic. Finally, in the step of frequency forecasting, different methodology will be proposed for each service group and its applications are presented.

A Study on Forecasting Traffic Safety Level by Traffic Accident Merging Index of Local Government (교통사고통합지수를 이용한 차년도 지방자치단체 교통안전수준 추정에 관한 연구)

  • Rim, Cheoulwoong;Cho, Jeongkwon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.108-114
    • /
    • 2012
  • Traffic Accident Merging Index(TAMI) is developed for TMACS(Traffic Safety Information Management Complex System). TAMI is calculated by combining 'Severity Index' and 'Frequency'. This paper suggest the accurate TAMI prediction model by time series forecasting. Preventing the traffic accident by accurately predicting it in advance can greatly improve road traffic safety. Searches the model which minimizes the error of 230 local self-governing groups. TAMI of 2007~2009 years data predicts TAMI of 2010. And TAMI of 2010 compares an actual index and a prediction index. And the error is minimized the constant where selects. Exponential Smoothing model was selected. And smoothing constant was decided with 0.59. TAMI Forecasting model provides traffic next year safety information of the local government.

Traffic Demand Forecasting Method for LCCA of Pavement Section (도로포장의 생애주기비용 분석을 위한 장기 교통수요 추정)

  • Do, Myungsik;Kim, Yoonsik;Lee, Sang Hyuk;Han, Daeseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2057-2067
    • /
    • 2013
  • Traffic demand forecasting for pavement management in the present can be estimated using the past trends or subjective judgement of experts instead of objective methods. Also future road plans and local development plans of a target region, for example new road constructions and detour plans cannot be considered for the estimate of future traffic demands. This study, which is the fundamental research for developing objective and accurate decision-making support system of maintenance management for the national highway, proposed the methodology to predict future traffic demands according to 4-step traffic forecasting method using EMME in order to examine significance of future traffic demands affecting pavement deterioration trends and compare existing traffic demand forecasting methods. For the case study, this study conducted the comparison of traffic demand forecasting methods targeting Daejeon Regional Construction and Management Administration. Therefore, this study figured out that the differences of traffic demands and the level of agent costs as well as user costs between existing traffic demand forecasting methods and proposed traffic demand forecasting method with considering future road plans and local development plan.

A Study on Development of Forecasting Model for Traffic Accident in Korea (한국의 교통사고예측모형 개발에 관한 연구)

  • 이일병;임헌정
    • Journal of Korean Society of Transportation
    • /
    • v.8 no.1
    • /
    • pp.73-88
    • /
    • 1990
  • This study aims to develop a traffic accident forecasting model using the data, which are based on the past accidents in Korea. The regression analysis was used in conjuction with the variables of the traffic accidents and social behaviours. The objectives of this study are as follows; 1. The number of behicles has given a strong affect to increase the traffic accidents in Korea since a factor of vehicles has shown 86% over of total accidents. 2. The forecasting model regarding the traffic accidents, deaths and injuries, which was formulated for this study, proved to be useful in light of the results of the regression diagnostics. 3. It is expected that the traffic accidents in Korea in 1991 may take place as follows on condition that the traffic environment would worsen ; 274,000 cases of accidents with 13,600 deaths and 367,000 injuries, in 1994, 451,000 cases with 24,900 deaths and 71,500 injuries respectively.

  • PDF