• Title/Summary/Keyword: Traffic Wave

Search Result 191, Processing Time 0.027 seconds

Performance Comparison of Wave Information Retrieval Algorithms Based on 3D Image Analysis Using VTS Sensor (VTS 센서를 이용한 3D영상 분석에 기초한 파랑 정보 추출 알고리즘 성능 비교)

  • Ryu, Joong-seon;Lim, Dong-hee;Kim, Jin-soo;Lee, Byung-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.519-526
    • /
    • 2016
  • As marine accidents happen frequently, it is required to establish a marine traffic monitoring system, which is designed to improve the safety and efficiency of navigation in VTS (Vessel Traffic Service). For this aim, recently, X-band marine radar is used for extracting the sea surface information and, it is necessary to retrieve wave information correctly and provide for the safe and efficient movement of vessel traffic within the VTS area. In this paper, three different current estimation algorithms including the classical least-squares (LS) fitting, a modified iterative least-square fitting routine and a normalized scalar product of variable current velocities are compared with buoy data and then, the iterative least-square method is modified to estimate wave information by improving the initial current velocity. Through several simulations with radar signals, it is shown that the proposed method is effective in retrieving the wave information compared to the conventional methods.

The Development of a Collision Warning System for Small-Sized Vessels Using WAVE Communication Technology (WAVE 통신을 이용한 소형선박 충돌경보시스템 개발 연구)

  • Kang, Won-Sik;Kim, Young-Du;Lee, Myoung-Ki;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.2
    • /
    • pp.151-158
    • /
    • 2019
  • Wireless communication technology (WAVE) for vehicles, which is the core technology behind the next-generation intelligent transport system (C-ITS), is used to deliver information about vehicles to prevent traffic accidents and traffic situations that may arise between vehicles and infrastructure. Similar traffic issues often arise in marine scenarios. Currently, AIS is being used as a means of transmitting information such as the status of relative vessels, but research is being carried out to solve problems with AIS such as overloading by applying wireless communication technology for vehicles to the sea. In this study, a collision warning system suitable for small-sized vessels was developed based on the marine application of WAVE for vehicles verified through prior research, and the adequacy of this collision warning system was reviewed through a practical test. It is expected that this system will contribute greatly to future e-Navigation applications or self-driving ships as well as to preventing marine accidents.

Development of Shock Wave Delay Estimation Model for Mixed Traffic at Unsaturated Signalized Intersection (충격파를 이용한 신호교차로 지체산정 모형 개발 (비포화 2차로 신호교차로 상에서의 버스혼합교통류 지체산정모형))

  • Kim, Won-Gyu;Kim, Byeong-Jong;Park, Myeong-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.6
    • /
    • pp.75-84
    • /
    • 2010
  • Controlled traffic intersection is critical point in terms of transportation network performance, where the most of traffic congestion arises. One of the most important and favorable measure of effectiveness in the signal controlled intersection is approach delay. Although lots of efforts to develop traffic delay estimation models have been made throughout the years, most of them were focusing on homogeneous traffic flow. The purpose of this research is to develop a traffic delay estimation model for traffic flow mixed with bus based on the horizontal shockwave theory. Traffic simulation is performed to test the adaptation level of the model in generic environment. The result shows that the delay increases with increasing bus traffic. Overall model accuracy comparing simulation result is acceptable, that shows the error range around 10 percent.

Implications and numerical application of the asymptotical shock wave model (점진적 충격파모형의 함축적 의미와 검산)

  • Cho, Seong-Kil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.51-62
    • /
    • 2012
  • According to the Lighthill and Whitham's shock wave model, a shock wave exists even in a homogeneous speed condition. They referred this wave as unobservable- analogous to a radio wave that cannot be seen. Recent research has attempted to identify how such a counterintuitive conclusion results from the Lighthill and Whitham's shock wave model, and derive a new asymptotical shock wave model. The asymptotical model showed that the shock wave in a homogenous speed traffic stream is identical to the ambient vehicle speed. Thus, no radio wave-like shock wave exists. However, performance tests of the asymptotical model using numerical values have not yet been performed. We investigated the new asymptotical model by examining the implications of the new model, and tested it using numerical values based on a test scenario. Our investigation showed that the only difference between both models is in the third term of the equations, and that this difference has a crucial role in the model output. Incorporation of model parameter${\alpha}$ is another distinctive feature of the asymptotical model. This parameter makes the asymptotical model more flexible. In addition, due to various choices of ${\alpha}$ values, model calibration to accommodate various traffic flow situations is achievable. In Lighthill and Whitham's model, this is not possible. Our numerical test results showed that the new model yields significantly different outputs: the predicted shock wave speeds of the asymptotical model tend to lean toward the downstream direction in most cases compared to the shock wave speeds of Lighthill and Whitham's model for the same test environment. Statistical tests of significance also indicate that the outputs of the new model are significantly different than the corresponding outputs of Lighthill and Whitham's model.

Link Budget of WAVE Communication System for a Reliable ITS Service under Highway Environments (고속도로 환경에서 안정적인 ITS서비스를 위한 WAVE 통신 시스템 link budget 분석)

  • Song, Yoo-seung;Yun, Hyun-jeong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.4
    • /
    • pp.80-85
    • /
    • 2015
  • The era of intelligent transportation system(ITS) has been arrived by applying information and communication technology(ICT) to the traffic. One of these technological advances is a wireless communication technology for a high speed vehicle to be connected to an infrastructure(V2I). A variety of road traffic safety services and operator comfort services are being developed by means of WAVE(Wireless Access in a Vehicular Environment) based on IEEE802.11p Standard. In this paper, the link budget is analyzed to provide a reliable quality of these ITS services. Log-distance model and two-ray model is employed for the wave propagation path loss model which is adequate for a highway environment. Reliable cell coverage is suggested for ITS services from the link budget.

WAVE based Multi-Channel MAC(MCM) Technology for Reliable Vehicle Safety Message Service (신뢰성 높은 차량 안전 서비스를 위한 WAVE 기반 Multi-Channel MAC 기술)

  • Park, Jong-Min;Oh, Hyun-Seo;Cho, Sung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.78-85
    • /
    • 2011
  • In vehicle ad-hoc network (VANET) environments, traffic related information such as accident information, emergency information and real time traffic condition have to be delivered to on-board-unit (OBU) or/and road-side-equipment (RSE) for preventing traffic accidents in advance. In this paper, we introduce a Multi-Channel MAC (MCM) since the existing single channel operation may cause packet transmission delay and unexpected communication failure. To offer a seamless safety message transmission during the various services, it is necessary to manage the MAC scheduler in wireless access in vehicular environments (WAVE) systems. The MCM consists of MAC softwares and MAC hardwares where the former and the later ones are implemented with real time operation system based C language and FPGA module with VHDL language, respectively. The performance and QoS are verified by practical measurements and compared with the scheme using single channel operation.

Assessment of External Force Acting on Ship Using Big Data in Maritime Traffic (해상교통 빅데이터에 의한 선박에 작용하는 외력영향 평가에 관한 연구)

  • Kim, Kwang-Il;Jeong, Jung Sik;Park, Gyei-Kark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.379-384
    • /
    • 2013
  • For effective ship management in VTS(Vessel Traffic Service), it needs to assess the external force acting on ship. Big data in maritime traffic can be roughly categorized into two groups. One is the traffic information including ship's particulars. The other is the external force information e.g., wind, sea wave, tidal current. This paper proposes the method to assess the external force acting on ship using big data in maritime traffic. To approach Big data in maritime traffic, we propose the Waterway External Force Code(WEF code) which consist of wind, wave, tidal and current information, Speed Over the Water(SOW) of each ship, weather information. As a results, the external force acting a navigating ship is estimated.

Development of Millimeter-Wave Communication Modem for Mobile Wireless Backhaul in Mobile Hotspot Network

  • Choi, Seung Nam;Kim, Junhyeong;Kim, Il Gyu;Kim, Dae Jin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.212-220
    • /
    • 2014
  • The current cellular communications are optimized for low mobility users, meaning that their performance is degraded at high speed. Therefore, passengers in a high-speed train experience very poor radio link quality due to the significantly large number of simultaneous handovers. In addition, wireless data traffic is expanding exponentially in trains, subways and buses due to the widespread use of smartphones and mobile devices. To solve the inherent problem of cellular communication networks and meet the growing traffic demand, this paper proposes the mobile hotspot network of a millimeter-wave communication system as a mobile wireless backhaul. This paper describes the physical layer design of uplink and downlink in the proposed system, and the performances of uplink and downlink are evaluated under Rician fading channel conditions. The implemented baseband prototype of the proposed millimeter-wave communication modem is presented. This system can provide a Gbps data rate service in high-speed trains carrying hundreds of wireless Internet users.

A Study on the Time Delay Characteristics of Traffic Signal Phase and Timing Information Providing System (신호현시 정보 제공 시스템의 시간 지연특성 연구)

  • Bae, Jeong Kyu;Seo, Kyung Duk;Seo, Woo Chang;Seo, Dae Wha
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.48-59
    • /
    • 2022
  • A V2X system can be a candidate as a means to increase the stability of autonomous vehicles. In particular, in order to implement a Level 4 or higher autonomous driving system, the application of the V2X system is essential. Wireless communication technologies applicable to the V2X system include WAVE and C-V2X. Currently, the V2X service most used by autonomous driving systems is a service that provides signal phase and timing information and since real-time characteristic is a very important, verification of this service must be done. In this paper, we measured the time delay characteristics for providing signal phase and timing information using WAVE and LTE communication, and proposed a TOD-based signal phase and timing information generation method without using V2X communication system. To analyze the time delay characteristics, RTT (Round Trip Time) was measured as a result of the measurement. Average RTT using WAVE communication was 5.84ms and was 104.15ms with LTE communication. As a result of measuring the error between the signal phase and timing information generated based on TOD and the actual traffic light state, it was measured to be -0.284~3.784sec.