• Title/Summary/Keyword: Traffic Volume Data

Search Result 458, Processing Time 0.022 seconds

Statistical Classification of Highway Segments for Improving the Efficiency of Short-term Traffic Count Planning (효율적인 교통량 조사를 계획하기 위한 조사구간의 통계적 특성 분류 연구)

  • Jung, YooSeok;Oh, JuSam
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2016
  • PURPOSES : The demand for extending national highways is increasing, but traffic monitoring is hindered because of resource limitations. Hence, this study classified highway segments into 5 types to improve the efficiency of short-term traffic count planning. METHODS : The traffic volume trends of 880 highway segments were classified through R-squared and linear regression analyses; the steadiness of traffic volume trends was evaluated through coefficient of variance (COV), and the normality of the data were determined through the Shapiro-Wilk W-test. RESULTS : Of the 880 segments, 574 segments had relatively low COV and were classified as type 1 segments, and 123 and 64 segments with increasing and decreasing traffic volume trends were classified as type 2 and type 3 segments, respectively; 80 segments that failed the normality test were classified as type 4, and the remaining 39 were classified as type 5 segments. CONCLUSIONS : A theoretical basis for biennial count planning was established. Biennial count is recommended for types 1~4 because their mean absolute percentage errors (MAPEs) are approximately 10%. For type 5 (MAPE =19.26%), the conventional annual count can be continued. The results of this analysis can reduce the traffic monitoring budget.

A Study on the Prediction of the World Seaborne Trade Volume through the Exponential Smoothing Method and Seemingly Unrelated Regression Model (지수평활법과 SUR 모형을 통한 세계 해상물동량 예측 연구)

  • Ahn, Young-Gyun
    • Korea Trade Review
    • /
    • v.44 no.2
    • /
    • pp.51-62
    • /
    • 2019
  • This study predicts the future world seaborne trade volume with econometrics methods using 23-year time series data provided by Clarksons. For this purpose, this study uses simple regression analysis, exponential smoothing method and seemingly unrelated regression model (SUR Model). This study is meaningful in that it predicts worldwide total seaborne trade volume and seaborne traffic in four major items (container, bulk, crude oil, and LNG) from 2019 to 2023 as there are few prior studies that predict future seaborne traffic using recent data. It is expected that more useful references can be provided to trade related workers if the analysis period was increased and additional variables could be included in future studies.

Conv-LSTM-based Range Modeling and Traffic Congestion Prediction Algorithm for the Efficient Transportation System (효율적인 교통 체계 구축을 위한 Conv-LSTM기반 사거리 모델링 및 교통 체증 예측 알고리즘 연구)

  • Seung-Young Lee;Boo-Won Seo;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.321-327
    • /
    • 2023
  • With the development of artificial intelligence, the prediction system has become one of the essential technologies in our lives. Despite the growth of these technologies, traffic congestion at intersections in the 21st century has continued to be a problem. This paper proposes a system that predicts intersection traffic jams using a Convolutional LSTM (Conv-LSTM) algorithm. The proposed system models data obtained by learning traffic information by time zone at the intersection where traffic congestion occurs. Traffic congestion is predicted with traffic volume data recorded over time. Based on the predicted result, the intersection traffic signal is controlled and maintained at a constant traffic volume. Road congestion data was defined using VDS sensors, and each intersection was configured with a Conv-LSTM algorithm-based network system to facilitate traffic.

Development and Analysis of the Interchange Centrality Evaluation Index Using Network Analysis (네트워크 분석을 이용한 거점평가지표 개발 및 특성분석)

  • KIM, Suhyun;PARK, Seungtae;WOO, Sunhee;LEE, Seungchul
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.6
    • /
    • pp.525-544
    • /
    • 2017
  • With the advent of the big data era, the interest in the development of land using traffic data has increased significantly. However, the current research on traffic big data lingers around organizing or calibrating the data only. In this research, a novel method for discovering the hidden values within the traffic data through data mining is proposed. Considering the fact that traffic data and network structures have similarities, network analysis algorithms are used to find valuable information in the actual traffic volume data. The PageRank and HITS algorithms are then employed to find the centralities. While conventional methods present centralities based on uncomplicated traffic volume data, the proposed method provides more reasonable centrality locations through network analysis. Since the centrality locations that we have found carry detailed spatiotemporal characteristics, such information can be used as an objective basis for making policy decisions.

Development of Dynamic Traffic Information System based on GPS Technology (GPS 기술기반의 동적 도로소통정보시스템 개발)

  • Jang, Yong-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.14-24
    • /
    • 2006
  • There are many problems and limits in equipments being used for traffic-volume analysis in the country. And traffic-volume information acquired through existing equipments is not provided in real-time. In the case of urban, there are limits on guarantee of trust on comprehending a appropriate road-volume because of difficulty on analyzing traffic-volume density and time series. And it is difficult to applicate in deciding a road policy as existing equipments don't provide the control information of traffic-flow. Therefore, it is necessary to build a road-flow policy rapidly and accurately through the road-flow information that analyze post-processed statistics data using traffic-flow investigation based on real time. In this study, we developed TICS(Traffic Information Collection System) based on GPS which could transmit traffic information transformed from car location information to traffic control center. And we developed TCS(Traffic Control System) based on Web GIS, which could manage and analyze transmitted traffic information, and it could offer handled road-flow information to Web-site in realtime.

  • PDF

The Effect of Traffic Volume on the Air Quality at Monitoring Sites in Gwangju (광주광역시 대기오염측정소 주변 교통량이 대기질에 미치는 영향)

  • Lee, Dae-Haeng;An, Sang-Su;Song, Hyeong-Myeong;Park, Ok-Hyun;Park, Kang-Soo;Seo, Gwang-Yeob;Cho, Young-Gwan;Kim, Eun-Sun
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.3
    • /
    • pp.204-214
    • /
    • 2014
  • Objectives: Vehicular emissions are one of the main sources of air pollution in urban areas. Correlation analysis was conducted between air pollutants and traffic volume in order to identify causes of air pollution in Gwangju. Methods: Using traffic volumes and air quality monitoring data from 2002 to 2012 from nine stations (seven urban areas, two roadside areas), especially at three sites where traffic volumes were high, the correlation coefficients were obtained between air pollutants as PM-10 (particulate matter), $NO_2$, $SO_2$, CO and $O_3$ at the stations and traffic volumes near the air monitoring stations. Results: Due to traffic volume and distance between the station and the traffic road, concentrations of pollutants at roadside areas were higher than at urban areas, with the exception of $O_3$. The concentration of $O_3$ showed statistically significance with those of other gas materials as $NO_2$, $SO_2$, and CO in winter (p<0.001) and spring (p<0.05). During the period of October 7 to 20, 2012, excluding periods of yellow dust, smog and rainy season, the ratio of $NO/(NO+NO_2)$ showed the highest value 0.57 and 0.40 at Unam and Chipyeong of two roadside stations, followed by 0.35 at Nongseong with vehicular effects. The correlation coefficient between traffic volume and $O_3$, CO, $NO_2$ became higher when the data on mist and haze days were excluded, than when all hourly data were used in that period, at the three sites of Unam, Chipyeong, and Nongseong. Conclusions: Air quality showed a considerable effect from vehicles at roadside areas compared to in urban areas. Air pollutant diminishment strategies need to be aggressively adopted in order to protect atmospheric environment.

A Study on the Methodology for Expanding Collected Sampling Data with the RFID System and Applying in National Road Traffic Volume Survey (RFID 표본데이터의 전수화방법 및 '국가도로교통량조사'에 활용방안 연구)

  • Park, Bum-Jin;Lee, Seung-Hun;Moon, Byeong-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.29-37
    • /
    • 2008
  • In this parer, we purpose for applying the RFID(Radio Frequency IDentification) system in National Road Traffic Volume Survey. Because there is limitation for shipping RFID Tag on every car, we firstly defined Expansion (process of making the number of all cars which passed survey point from sampling data) and determined the best methodology among 3 methodologies (Time factor Model, Fuzzy Model, Artificial Neural Network). As a result of analysis, Time Factor Model was chosen as the best methodology for Expansion. Also, we analyzed to find an application of the RFID system in National Road Traffic Volume Survey and obtained a possibility applying it. It is expected that if the RFID system is used in Traffic Volume Survey, the survey cost is saved than before.

  • PDF

Understanding Watching Patterns of Live TV Programs on Mobile Devices: A Content Centric Perspective

  • Li, Yuheng;Zhao, Qianchuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3635-3654
    • /
    • 2015
  • With the rapid development of smart devices and mobile Internet, the video application plays an increasingly important role on mobile devices. Understanding user behavior patterns is critical for optimized operation of mobile live streaming systems. On the other hand, volume based billing models on cloud services make it easier for video service providers to scale their services as well as to reduce the waste from oversized service capacities. In this paper, the watching behaviors of a commercial mobile live streaming system are studied in a content-centric manner. Our analysis captures the intrinsic correlation existing between popularity and watching intensity of programs due to the synchronized watching behaviors with program schedule. The watching pattern is further used to estimate traffic volume generated by the program, which is useful on data volume capacity reservation and billing strategy selection in cloud services. The traffic range of programs is estimated based on a naive popularity prediction. In cross validation, the traffic ranges of around 94% of programs are successfully estimated. In high popularity programs (>20000 viewers), the overestimated traffic is less than 15% of real happened traffic when using upper bound to estimate program traffic.

Development of Incident Detection Method for Interrupted Traffic Flow by Using Latin Square Analysis (라틴방격분석법을 이용한 단속류도로에서의 유고감지기법 개발)

  • Mo, Mooki;Kim, Hyung Jin;Son, Bongsoo;Kim, Dae Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.623-631
    • /
    • 2011
  • In this study, a new method which can detect incidents in interrupted traffic flow was suggested. The applied method of detecting the incident is the Latin Square Analysis Method by using traffic traits. In the Latin Square Analysis, unlike other previously tried methods, the traffic situation was analyzed, this time considering the changes in traffic traits for each lane and for each time period. The data used in this study were the data observed in the actual field with fine weather. The traffic volumes, the vehicle speed and the occupancy rate were collected on the interrupted flow road. The data were collected in normal and incident situations. The incidents occurred on the second lane, the time of persistent incidents was set to 10 minutes. The Latin Square Analyses were performed using the collected data with the traffic volume, with the vehicle speed or with the occupancy rate. As a result in this study, in case of detecting the traffic situations with Latin Square Analysis, it will be more successful to apply traffic volume to detect the traffic situations than to apply other factors.

Developing the Pedestrian Accident Models Using Tobit Model (토빗모형을 이용한 가로구간 보행자 사고모형 개발)

  • Lee, Seung Ju;Kim, Yun Hwan;Park, Byung Ho
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • PURPOSES : This study deals with the pedestrian accidents in case of Cheongju. The goals are to develop the pedestrian accident model. METHODS : To analyze the accident, count data models, truncated count data models and Tobit regression models are utilized in this study. The dependent variable is the number of accident. Independent variables are traffic volume, intersection geometric structure and the transportation facility. RESULTS : The main results are as follows. First, Tobit model was judged to be more appropriate model than other models. Also, these models were analyzed to be statistically significant. Second, such the main variables related to accidents as traffic volume, pedestrian volume, number of Entry/exit, number of crosswalk and bus stop were adopted in the above model. CONCLUSIONS : The optimal model for pedestrian accidents is evaluated to be Tobit model.