• Title/Summary/Keyword: Traffic Stability

Search Result 320, Processing Time 0.028 seconds

Hierarchical superframe formation algorithm in 802.15.3 network (네트워크에서 계층적 슈퍼프레임 알고리듬을 통한 대역폭의 효율적인 활용)

  • Youn Kyu Jung;June Sun Do;Lee Jang Yeon;Lee Hyeon Seok;Won Yun Jae;Kwon Tai Gil;Torok Attila;Vajda Lorant
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10B
    • /
    • pp.849-856
    • /
    • 2004
  • This paper proposes a novel superframe formation algorithm for wireless systems with time-slotted superframe structure. The design objective of the proposed algorithm is to provide high performance, stability, error tolerance, as well as power-saving features. The paper presents a comprehensive performance analysis of the Proposed superframe formation algorithm with different types of traffic applied. During analysis several performance metrics are investigated. The error tolerance to beacon loss and the behavior of CBR flows are also studied. We show that the proposed algorithm inherits the advantages of the previously used algorithms, while providing additional features.

Evaluation on the Horizontal Alignment of Road Centerline using GIS Programming (GIS 프로그래밍을 이용한 도로중심선 평면선형 평가)

  • Kim, Dong-Ki;Choi, Se-Hyu
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The horizontal alignment of road is deeply related with the stability of the road and traffic capacity. It is necessary to analyze horizontal alignment of road accurately for efficient maintenance of the road and relevance judgment about the standard. Recently the study on horizontal alignment of road using Lidar data and GPS was concluded, but they were many problem analyzing horizontal alignment radius of curvature in wide area. In this study, the tool which the radius of curvature can evaluate the suitability about "Rules about the Road Structure & Facilities Standards" by using center lines of the road of the digital map tries to implement on GIS. The interface was designed and implemented which can automatically estimate the Road Centerline Horizontal Alignment by using $ESRI^{(R)}$ $ArcObject^{TM}$.

An Experimental Study on the Transient Behavior of Vehicle Rollover (차량 롤전복의 과도거동에 관한 시험적 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2011
  • Rollover accident is one of the serious traffic accident and rollover accident takes high portion of all accident. The most common type of rollover is a tripped rollover which occupy 95% of all type of single-vehicle rollover. Tripped rollover occurs when a vehicle leaves normal road way and tripped by loose gravel, soil of fixed object such as guard rail, curbs and ditches. And the rest of the type of rollover is un-tripped rollover. An un-tripped rollovers that occurs during high-speed collision avoidance maneuvers. In this paper, presents the explanation of the un-tripped rollover test method and procedure, additionally this paper deals with various occurrence in the un-tripped test such as occurring excessive tire camber in the un-tripped test, tire side-wall contact with road surface and roll oscillation. And this paper analyzes the analysis of the roll rate amplitude in specific frequency through the FFT (Fast Fourier Transform) and the roll angle at the steering reverse timing which is the Fishhook test roll rate feedback time. Finally, this paper analyzes the relations between the estimated steady state roll gain and rollover stability.

Comparison of Chord method with Surveying in Track irregularity Measurement (측량과 현방식 궤도틀림 측정 비교)

  • Lee, Jee-Ha;Lee, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1647-1652
    • /
    • 2008
  • Track geometry consists of tangent and curved lines, which caused undesirable changes in initial track geometry by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To be able to objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, this method determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from specific property of measuring tool. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolly. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is Trackmaster, measures versine with 2m of chord length.

  • PDF

A Design of Vehicle Management System Apply Most Network And Sensor (MOST 네트워크와 센서를 활용한 차량 관리 시스템 설계)

  • Lee, Hyoun-Sup;Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.08a
    • /
    • pp.95-98
    • /
    • 2008
  • The vehicle has many technique change from The requirement of the safety the energy environment and convenience dimension is an enlargement toe. This is keeping changing the paradigm of the vehicle industry rapidly. The change to be technical such brought the intelligence of the former control device. And this organizes a sensor network among each systems and makes new traffic system. This paper a standard framework based on Sensor. We call it Vehicle Management System. The VMS used MOST network and It is able to make the stability of the component swap time or vehicle order the greatest.

  • PDF

Analysis on motions characteristics of Floaters using two-dimensional Boundary Element Method (2차원 경계요소법을 이용한 부유체의 운동 특성 연구)

  • Baek, Mi-Seon;Seong, Yu-Chang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.136-138
    • /
    • 2013
  • Current, standards light buoys as maritime traffic safety facilities have 10 different types of buoys and the smallest size of those is 4.4m. Therefore, making for easy replacement and repair parts for the type of small light buoys is proposed. Meanwhile, position reliability of floaters by external forces in the environment fall and stability examination should be considered for prohibiting accidents as loss. In this paper, a new light buoy is analyzed on Encounter Frequency types using commercial program and fluid forces is simulated on cross-sectional shape of the float using two-dimensional Boundary Element Method(BEM).

  • PDF

Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.299-312
    • /
    • 2019
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train under crosswind. Compared with the conditions of no-wind, crosswind triggers severer vibration of the dynamic system; compared with the short-pier viaduct, the high-pier viaduct has worse stability under crosswind. For these reasons, the running safety of the metro vehicle traveling on a high-pier viaduct under crosswind is analyzed to ensure the safe operation in metro lines in mountain cities. In this paper, a dynamic model of the metro vehicle-track-bridge system under crosswind is established, in which crosswind loads model considering the condition of wind zone are built. After that, the evaluation indices and the calculation parameters have been selected, moreover, the basic characteristics of the dynamic system with high-pier under crosswind are analyzed. On this basis, the response varies with vehicle speed and wind speed are calculated, then the corresponding safety zone is determined. The results indicate that, crosswind triggers drastic vibration to the metro vehicle and high-pier viaduct, which in turn causes running instability of the vehicle. The corresponding safety zone for metro vehicle traveling on the high-pier is proposed, and the metro traffic on the high-pier bridge under crosswind should not exceed the corresponding limited vehicle speed to ensure the running safety.

Design and Implementation of Vibration Isolation System for Mobile Doppler Wind LIDAR

  • Song, Xiaoquan;Chen, Chao;Liu, Bingyi;Xia, Jinbao;Stanic, Samo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.103-108
    • /
    • 2013
  • The operation of a Doppler wind LIDAR in a mobile environment is very sensitive to shocks and vibrations, which can cause critical failures such as misalignment of the optical path and damage to optical components. To be able to stabilize the LIDAR and to perform wind field measurements in motion, a shock absorption and vibration isolation system was designed and implemented. The performance of the vehicle-mounted Doppler wind LIDAR was tested in motion, first in a circular test route with a diameter of about 30 m and later in regular expressway traffic. The vibration isolation efficiency of the system was found to be higher than 82% in the main vibration area and shock dynamic deflection was smaller than maximal deflection of the isolator. The stability of the laser locking frequency in the same mobile environment before and after the vibration isolation system installation was also found to be greatly improved. The reliability of the vibration isolation system was confirmed by good results of the analysis of the LIDAR data, in particular the plane position indicator of the line of sight velocity and the wind profile.

Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks' VIV stability

  • Li, Ke;Qian, Guowei;Ge, Yaojun;Zhao, Lin;Di, Jin
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • Vortex-Induced-Vibration (VIV) is one kind of the wind-induced vibrations, which may occur in the construction and operation period of bridges. This phenomenon can bring negative effects to the traffic safety or can cause bridge fatigue damage and should be eliminated or controlled within safe amplitudes.In the current VIV studies, one available mitigation countermeasure, the horizontal flow-isolating plate, shows satisfactory performance particularly in PI shaped bridge deck type. Details of the wind tunnel test are firstly presented to give an overall description of this appendage and its control effect. Then, the computational-fluid-dynamics(CFD) method is introduced to investigate the control mechanism, using two-dimensional Large-Eddy-Simulation to reproduce the VIV process. The Reynolds number of the cases involved in this paper ranges from $1{\times}10^5$ to $3{\times}10^5$, using the width of bridge deck as reference length. A field-filter technique and detailed analysis on wall pressure are used to give an intuitive demonstration of the changes brought by the horizontal flow-isolating plate. Results show that this aerodynamic appendage is equally effective in suppressing vertical and torsional VIV, indicating inspiring application prospect in similar PI shaped bridge decks.

An Analysis on the Utilization of STAR (Standard Terminal Arrival Route) and CDO (Continuous Descent Operation) Flight Ratio in the Domestic Airport (국내 표준계기도착절차(STAR)의 활용도 및 연속강하접근 운항 비율 분석)

  • ChoongSub Lee;JuHwan Lee;JangHoon Park;HoJong Baik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.132-144
    • /
    • 2022
  • In response to the recent surge in aviation demand, major airport and aviation authorities continue to make efforts to formulate arrival procedures that take into account efficient aircraft separation, noise and environmental issues related to carbon (CO2) emissions. In order to ensure efficient traffic control and environmental issues, as a result, a new concept Trombone, Point Merge, etc. have been introduced and widely used. However, these new concept incisions are becoming a factor that hinders operational efficiency and stability due to the restricted domestic airspace such as military airspace and excessive constraints of altitude, speed, etc. which do not reflect the concept of continuous descent operation and eventually needs to be modified to make continuous descent operation as feasible as possible. We herewith analyze and propose the way of improving flight safety and efficiency in the arrival operation procedure by supplementary modification which consequently contribute to the aviation industry international competitiveness.