• Title/Summary/Keyword: Traffic Signal Algorithm

Search Result 209, Processing Time 0.026 seconds

Algorithm of Optimal Traffic Signal Cycle using Neural Network and Fuzzy Rules (신경망 및 퍼지규칙을 이용한 최적 교통신호주기 알고리즘)

  • 홍용식;박종국
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.8
    • /
    • pp.88-100
    • /
    • 1997
  • This paper proposes a new concept for an optimal traffic signal cycle method which will reduce the average vehicle waiting time and improve average vehicle speed. Electro sensitive traffic system can extend the traffic cycle when there ar emany vehicles in the road or it can reduce the traffic consider vehicle length, so it can cause oveflow and reduce average vechicel waiting time at the intersection, we propose on optimal traffic cycle with fuzzy ruels and neural network. Computer simulation results prove that reducing the average vehicle waiting time which proposed considering passing vehicle's length for the optimal traffic cycle better than fixe dsignal method dosen't consider vehicle length.

  • PDF

Research on optimization of traffic flow control at intersections (교차로 교통 흐름 제어 최적화에 관한 연구)

  • Li, Qiutan;Song, Jeong-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.15-24
    • /
    • 2022
  • At present, there are few studies on signal control of pedestrian traffic flow and non-motor traffic flow at intersections. Research on the optimization scheme of mixed traffic flow signal control can coordinate and control the overall traffic flow of pedestrians, non-motor vehicles and motor vehicles, which is of great significance to improve the congestion at intersections. For the traffic optimization of intersections, this paper starts from two aspects: channelization optimization and phase design, and reduces the number of conflict points at intersections from spatial and temporal right-of-way allocation respectively. Taking the classical signal timing method as the theoretical basis, and aiming at ensuring the safety and time benefit of traffic travelers, a channelization optimization and signal control scheme of the intersection is proposed. The channelization and phase design methods of intersections with motor vehicles, non-motor vehicles and pedestrians as objects are discussed, and measures to improve the channelization optimization of intersections are proposed. A multi-objective optimization model of intersection signal control was established, and the model was solved based on NSGA-II algorithm.

Analysis of Distributed DDQ for QoS Router

  • Kim, Ki-Cheon
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.31-44
    • /
    • 2006
  • In a packet switching network, congestion is unavoidable and affects the quality of real-time traffic with such problems as delay and packet loss. Packet fair queuing (PFQ) algorithms are well-known solutions for quality-of-service (QoS) guarantee by packet scheduling. Our approach is different from previous algorithms in that it uses hardware time achieved by sampling a counter triggered by a periodic clock signal. This clock signal can be provided to all the modules of a routing system to get synchronization. In this architecture, a variant of the PFQ algorithm, called digitized delay queuing (DDQ), can be distributed on many line interface modules. We derive the delay bounds in a single processor system and in a distributed architecture. The definition of traffic contribution improves the simplicity of the mathematical models. The effect of different time between modules in a distributed architecture is the key idea for understanding the delay behavior of a routing system. The number of bins required for the DDQ algorithm is also derived to make the system configuration clear. The analytical models developed in this paper form the basis of improvement and application to a combined input and output queuing (CIOQ) router architecture for a higher speed QoS network.

  • PDF

A Wireless Downlink Packet Scheduling Algorithm for Multimedia Traffic (멀티미디어 트래픽에 대한 무선 환경에서의 순방향 패킷 스케줄링 알고리즘)

  • 김동회;류병한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.539-546
    • /
    • 2002
  • In this paper, we consider a wireless multimedia environment to service both real-time video traffic and non-real-time WWW-application traffic In our suggested new packet scheduling algorithm, we consider both the accumulation counter and SIR to reduce delay in real-time traffic. In addition, our packet scheduling algorithm gives priority first to real-time video traffic service and then to non-real-time internet Packet service when real-time traffic service is absent. From the simulation results, we find that the AC (Accumulation Counter) scheme has much smaller delay than the conversional M-LWDF scheme for real-time video data users, which has a special quality sensitive to its own delay. We also consider the transmission structure of using both the frame period in the time-axis and the OVSF codes in the code-axis at the same time, which is similar to the structure of HSDPA system.

Traffic Control using Q-Learning Algorithm (Q 학습을 이용한 교통 제어 시스템)

  • Zheng, Zhang;Seung, Ji-Hoon;Kim, Tae-Yeong;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5135-5142
    • /
    • 2011
  • A flexible mechanism is proposed in this paper to improve the dynamic response performance of a traffic flow control system in an urban area. The roads, vehicles, and traffic control systems are all modeled as intelligent systems, wherein a wireless communication network is used as the medium of communication between the vehicles and the roads. The necessary sensor networks are installed in the roads and on the roadside upon which reinforcement learning is adopted as the core algorithm for this mechanism. A traffic policy can be planned online according to the updated situations on the roads, based on all the information from the vehicles and the roads. This improves the flexibility of traffic flow and offers a much more efficient use of the roads over a traditional traffic control system. The optimum intersection signals can be learned automatically online. An intersection control system is studied as an example of the mechanism using Q-learning based algorithm, and simulation results showed that the proposed mechanism can improve the traffic efficiency and the waiting time at the signal light by more than 30% in various conditions compare to the traditional signaling system.

A Study on Fuzzy Traffic Signal control using Analytic Hierarchy Process (계층분석 방법을 이용한 퍼지 교통 신호 제어에 관한연구)

  • 이상훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.2
    • /
    • pp.83-93
    • /
    • 2000
  • This paper proposes the use of the analytic hierarchy process(AHP) controller for obtaining optimal cycle time of traffic intersection signal. By means of simulations that have data from expert traffic estimators, the performance of AHP controller is compared with a fixed-time controller and fuzzy controller. A simulation was executed using data obtained from many expert interviewer of Ansan City hall rotary. The principal issue is how AHP controller algorithm can aid traffic signal supervisor to construct an expert system for traffic intersection signal control. This paper has two steps: (I) we shall present a new methodology based on the work of Satty for calculating a scale of importance of each of the objectives, (2) we also consider that the human's decision mechanism is represented by approximating reasoning where the fuzzy integral is used.

  • PDF

Establishment of Bus Priority Signal in Real-Time Traffic Signal Control (실시간신호제어시스템에서의 버스우선신호 알고리즘 정립 (중앙버스 전용차로를 대상으로))

  • Han, Myeong-Ju;Lee, Yeong-In
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.101-114
    • /
    • 2006
  • Recently due to the increase of cars and city life, the traffic congestion has worsened. It Is particularly worse in the center of the metropolis. Within the general public means, the public transport buses have the advantage of being more cheap, accessible and mobile. But as there is no separate lane for buses, the collision of cars and buses are creating damage to public service. In order to solve this situation, the bus priority signal system has been introduced to reduce the bus travel time and improve its services. The purpose of this study is to establish bus priority signal algorithm which builds bus efficiency under the real-time traffic signal control system and to analyze the effect of it. As the green time was calculated against real time (under the real-time traffic signal control system), compared to existing bus priority signal there was a reduction in cross street loss. The modified cycle was used to maintain signal progression. A case study was carried out using VISSIM simulation model. In result of this study, we found that there was a decrease in bus travel time despite some evidence of car delays and compared to existing bus priority signal the delay of dishonor could be reduced dramatically. The analysed result of person delay using MOE, is that there is evidence that when bus priority signal is in effect, the person delay is reduced.

Designing traffic signal patterns through genetic algorithms

  • Mikami, Sadayoshi;Nakajima, Jun;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.285-289
    • /
    • 1992
  • This paper describes a new optimization technique for the design of traffic signal patterns. The proposed method uses a Genetic Algorithm for searching through the better signal patterns. Since the Genetic Algorithm is effective to search directly through a huge binary coded state spaces, the proposed design method has the following advantages over the conventional OR methods: (1) on-line optimization is available within a reasonable time, (2) there is no limitation to the types of signals to be optimized. Some computer simulations are carried out and its ability of getting high quality control in a short period is demonstrated.

  • PDF

Development of Optimization Model for Traffic Signal Timing in Grid Networks (네트워크형 가로망의 교통신호제어 최적화 모형개발)

  • 김영찬;유충식
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.1
    • /
    • pp.87-97
    • /
    • 2000
  • Signal optimization model is divided bandwidth-maximizing model and delay-minimizing model. Bandwidth-maximizing model express model formulation as MILP(Mixed Integer Linear Programming) and delay-minimizing model like TRANSYT-7F use "hill climbing" a1gorithm to optimize signal times. This study Proposed optimization model using genetic algorithm one of evolution algorithm breaking from existing optimization model This Proposed model were tested by several scenarios and evaluated through NETSIM with TRANSYT-7F\`s outputs. The result showed capability that can obtain superior solution.

  • PDF

Development of Queue Length, Link Travel Time Estimation and Traffic Condition Decision Algorithm using Taxi GPS Data (택시 GPS데이터를 활용한 대기차량길이, 링크통행시간 추정 및 교통상황판단 알고리즘 개발)

  • Hwang, Jae-Seong;Lee, Yong-Ju;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.59-72
    • /
    • 2017
  • As the part of study which handles the measure to use the individual vehicle information of taxi GPS data on signal controls in order to overcome the limitation of Loop detector-based collecting methods of real-time signal control system, this paper conducted series of evaluations and improvements on link travel time, queue vehicle time estimates and traffic condition decision algorithm from the research introduced in 2016. considering the control group and the other, the link travel time has enhanced the travel time and the length of queue vehicle has enhanced the estimated model taking account of the traffic situation. It is analyzed that the accuracy of the average link travel time and the length of queue vehicle are respectably both approximately 95 % and 85%. The traffic condition decision algorithm reflected the improved travel speed and vehicle length. Smoothing was performed to determine the trend of the traffic situation and reduce the fluctuation of the data, and the algorithms have refined so as to reflect the pass period on overflow judgment criterion.