• Title/Summary/Keyword: Traffic Congestion Control

Search Result 390, Processing Time 0.025 seconds

A Study on Performance Enhancement of the Rate Scheme for ABR Traffic on ATM Networks (ATM 망에서 ABR 트래픽을 위한 Rate 기법이 성능 향상 연구)

  • Lee, Yo-Seob;Yu, Eun-Jin;Chang, Hyun-Hee;Pang, Hea-Ja;Jun, Moon-Seog
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2605-2614
    • /
    • 1997
  • Recently, we are concerned with effective service according as the demand increase for high speed data service. We can use high speed transfer and multiple traffic service on the ATM networks, so we concentrate on preventive-control method rather than reactive-control one. But it is possible to have low QoS and traffic congestion due to unpredictable traffic and burst traffic. Specially, ATM Forum has discussed to standardization of traffic management of ABR(Available Bit Rate) service. Because ABR traffic controls the flow of traffic using the feedback information and the current status information of cell, it allocates bandwidth systematically and dynamically to the user. In this paper, we propose a new Rate-based flow control scheme which adapted double threshold buffer idea. The double threshold buffer controls the traffic control by establishing two threshold in buffer.

  • PDF

Cross-Layer Architecture for QoS Provisioning in Wireless Multimedia Sensor Networks

  • Farooq, Muhammad Omer;St-Hilaire, Marc;Kunz, Thomas
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.178-202
    • /
    • 2012
  • In this paper, we first survey cross-layer architectures for Wireless Sensor Networks (WSNs) and Wireless Multimedia Sensor Networks (WMSNs). Afterwards, we propose a novel cross-layer architecture for QoS provisioning in clustered and multi-hop based WMSNs. The proposed architecture provides support for multiple network-based applications on a single sensor node. For supporting multiple applications on a single node, an area in memory is reserved where each application can store its network protocols settings. Furthermore, the proposed cross-layer architecture supports heterogeneous flows by classifying WMSN traffic into six traffic classes. The architecture incorporates a service differentiation module for QoS provisioning in WMSNs. The service differentiation module defines the forwarding behavior corresponding to each traffic class. The forwarding behavior is primarily determined by the priority of the traffic class, moreover the service differentiation module allocates bandwidth to each traffic class with goals to maximize network utilization and avoid starvation of low priority flows. The proposal incorporates the congestion detection and control algorithm. Upon detection of congestion, the congested node makes an estimate of the data rate that should be used by the node itself and its one-hop away upstream nodes. While estimating the data rate, the congested node considers the characteristics of different traffic classes along with their total bandwidth usage. The architecture uses a shared database to enable cross-layer interactions. Application's network protocol settings and the interaction with the shared database is done through a cross-layer optimization middleware.

Internet Traffic Control Using Dynamic Neural Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.285-291
    • /
    • 2008
  • Active Queue Management(AQM) has been widely used for congestion avoidance in Transmission Control Protocol(TCP) networks. Although numerous AQM schemes have been proposed to regulate a queue size close to a reference level, most of them are incapable of adequately adapting to TCP network dynamics due to TCP's non-linearity and time-varying stochastic properties. To alleviate these problems, we introduce an AQM technique based on a dynamic neural network using the Back-Propagation(BP) algorithm. The dynamic neural network is designed to perform as a robust adaptive feedback controller for TCP dynamics after an adequate training period. We evaluate the performances of the proposed neural network AQM approach using simulation experiments. The proposed approach yields superior performance with faster transient time, larger throughput, and higher link utilization compared to two existing schemes: Random Early Detection(RED) and Proportional-Integral(PI)-based AQM. The neural AQM outperformed PI control and RED, especially in transient state and TCP dynamics variation.

The Performance Improvement using Rate Control in End-to-End Network Systems (종단간 네트워크 시스템에서 승인 압축 비율 제어를 이용한 TCP 성능 개선)

  • Kim, Gwang-Jun;Yoon, Chan-Ho;Kim, Chun-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 2005
  • In this paper, we extend the performance of bidirectional TCP connection over end-to-end network that uses transfer rate-based flow and congestion control. The sharing of a common buffer by TCP packets and acknowledgement has been known to result in an effect called ack compression, where acks of a connection arrive at the source bunched together, resulting in unfairness and degraded throughput. The degradation in throughput due to bidirectional traffic can be significant. Even in the simple case of symmetrical connections with adequate window size, the connection efficiency is improved about 20% for three levels of background traffic 2.5Mbps, 5.0Mbps and 7.5Mbps. Otherwise, the throughput of jitter is reduced about 50% because round trip delay time is smaller between source node and destination node. Also, we show that throughput curve is improved with connection rate algorithm which is proposed for TCP congetion avoidance as a function of aggressiveness threshold for three levels of background traffic 2.5Mbps, 5Mbps and 7.5Mbps. By analyzing the periodic bursty behavior of the source IP queue, we derive estimated for the maximum queue size and arrive at a simple predictor for the degraded throughput, applicable for relatively general situations.

Enhancing the Fairness of PGMCC (PGMCC의 공정성 향상)

  • Park, Young-Sun;Hyun, Do-Won;Jang, Ju-Wook
    • The KIPS Transactions:PartC
    • /
    • v.10C no.3
    • /
    • pp.311-316
    • /
    • 2003
  • To deploy multicast protocols, fairness to current Internet traffic, particularly TCP, is an important requirement. PGMCC is one of the most promising multicast congestion control proposals but it suffers from degradation of fairness by fixed timeout and uncertain acker selection. In this paper, we suggest addition of an adaptive timeout mechanism and NAK suppression in router using throughput comparison to improve fairness. Our simulation show improved fairness.

Performance Analysis for ABR Congestion Control Algorithm using Self-Similar Traffic (자기 유사 트래픽을 이용한 ABR 혼잡제어 알고리즘의 성능분석)

  • 진성호;이태오;임재홍;김동일
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.149-153
    • /
    • 2003
  • 네트워크를 설계하고 서비스를 구현하는데 있어서 중요한 변수중의 하나는 트래픽의 특성을 파악하는 것이다. 트래픽 특성에 관한 최근의 실험적 연구들은 기존의 모델들이 실제 트래픽의 특성을 제대로 나타낼 수 없다는 것을 지적해 왔고 최근 실제 트래픽 모델과 유사한 모델로서 자기 유사한 특성을 이용한 접근법이 대두되고 있다. 따라서, 본 논문에서는 실제 트래픽과 유사한 자기 유사 데이터 트래픽을 백그라운드 부하로 발생시켜 기존의 ABR(Available Bit Rate) 혼잡제어 알고리즘 중 fairshare을 지원하는 대표적인 EPRCA(Enhanced Proportional Rate Control Algorithm), ERI-CA(Explicit Rate Indication for Congestion Avoidance), NIST(National Institute of Standards and Technology) 스위치 알고리즘이 버스트한 트래픽에 대해 효율적으로 fairshare을 할당하는지를 알아 보았다.

  • PDF

A simulation study on TCP performance for constrained IoT networks

  • Chansook, Lim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • TCP is considered a major candidate transport protocol even for constrained IoT networks due to its ability to integrate into the existing network infrastructures. Since TCP implementations such as uIP TCP often allow only a single TCP segment per connection to be unacknowledged at any given time due to resource constraints, the congestion control relies only on RTO management. In our previous work, to address the problem that uIP TCP performs poorly particularly when a radio duty cycling mechanism is enabled and the hidden terminal problem is severe, we proposed a RTO scheme for uIP TCP and validated the performance through Cooja simulation. In this study, we investigate the effect of other factors that were not considered in our previous work. More specifically, the effect of traffic intensity, the degree of the hidden terminal problem, and RDC is investigated by varying the offered load and the transmission range, and the RDC channel check rate. Simulation results imply that we need to further investigate how to improve TCP performance when the radio duty cycling mechanism is used.

A Packet Dropping Algorithm based on Queue Management for Congestion Avoidance (폭주회피를 위한 큐 관리 기반의 패킷 탈락 알고리즘)

  • 이팔진;양진영
    • Journal of Internet Computing and Services
    • /
    • v.3 no.6
    • /
    • pp.43-51
    • /
    • 2002
  • In this paper, we study the new packet dropping scheme using an active queue management algorithm. Active queue management mechanisms differ from the traditional drop tail mechanism in that in a drop tail queue packets are dropped when the buffer overflows, while in active queue management mechanisms, packets may be dropped early before congestion occurs, However, it still incurs high packet loss ratio when the buffer size is not large enough, By detecting congestion and notifying only a randomly selected fraction of connection, RED causes to the global synchronization and fairness problem. And also, it is the biggest problem that the network traffic characteristics need to be known in order to find the optimum average queue length, We propose a new efficient packet dropping method based on the active queue management for congestion control. The proposed scheme uses the per-flow rate and fair share rate estimates. To this end, we present the estimation algorithm to compute the flow arrival rate and the link fair rate, We shows the proposed method improves the network performance because the traffic generated can not cause rapid fluctuations in queue lengths which result in packet loss

  • PDF

Flow Assignment and Packet Scheduling for Multipath Routing

  • Leung, Ka-Cheong;Victor O. K. Li
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.230-239
    • /
    • 2003
  • In this paper, we propose a framework to study how to route packets efficiently in multipath communication networks. Two traffic congestion control techniques, namely, flow assignment and packet scheduling, have been investigated. The flow assignment mechanism defines an optimal splitting of data traffic on multiple disjoint paths. The resequencing delay and the usage of the resequencing buffer can be reduced significantly by properly scheduling the sending order of all packets, say, according to their expected arrival times at the destination. To illustrate our model, and without loss of generality, Gaussian distributed end-to-end path delays are used. Our analytical results show that the techniques are very effective in reducing the average end-to-end path delay, the average packet resequencing delay, and the average resequencing buffer occupancy for various path configurations. These promising results can form a basis for designing future adaptive multipath protocols.

Development of The DCCP for Data Reliability in IP Traffic System (IP기반 교통시스템에서 데이터의 신뢰성을 위한 DCCP 개발)

  • Park, Hyun-Moon;Seo, Hae-Moon;Lee, Gil-Yong;Park, Soo-Hyun;Kim, Sung Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.1
    • /
    • pp.7-17
    • /
    • 2010
  • ITS(Intelligent Transport System) as things are used for Broadcast service using TDMB/TPEG/NAVI rather than personal seamless service. It is attaching weight to Traffic information gathering, Charging, Settlement service. This research is applied to improve DCCP(Datagram Congestion Control Protocol) which has function as protecting data and preserving message boundary. The improving method is like that we solve data trust in UDP because Connection and Transmission overhead in UDP is less than in TCP. We fix the data loss which is generated from unordered delivery section of IP base wireless service by using DCCP protocol. We guarantee of connection with OBE(On-Board Equipment) and reliance about transmission of data by complement to mapping table and multi-hoping. Finally, We evaluate the performance about transmission of IP based data. We constructed a test-bed near research center for this test.