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Internet Traffic Control Using Dynamic Neural Networks

Hyun Cheol Cho , M. Sami Fadali , and Kwon Soon Lee'

Abstract — Active Queue Management (AQM) has been widely used for congestion avoidance in
Transmission Control Protocol (TCP) networks. Although numerous AQM schemes have been
proposed to regulate a queue size close to a reference level, most of them are incapable of adequately
adapting to TCP network dynamics due to TCP’s non-linearity and time-varying stochastic properties.
To alleviate these problems, we introduce an AQM technique based on a dynamic neural network using
the Back-Propagation (BP) algorithm. The dynamic neural network is designed to perform as a robust
adaptive feedback controller for TCP dynamics after an adequate training period. We evaluate the
performances of the proposed neural network AQM approach using simulation experiments. The
proposed approach yields superior performance with faster transient time, larger throughput, and
higher link utilization compared to two existing schemes: Random Early Detection (RED) and
Proportional-Integral (PI)-based AQM. The neural AQM outperformed PI control and RED, especially

in transient state and TCP dynamics variation.
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1. Introduction

The essence of congestion control strategies for TCP
networks 1s to rapidly recover from network congestion, or
to prevent an incipient congestion. This can be achieved by
dynamically adjusting window size at the source side or
controlling incoming packets to a router at the link side.
Numerous TCP schemes that optimally adjust window size
for congestion avoidance have been explored in the last
decade. The first widely used scheme, TCP Tahoe, was
later modified to TCP Reno [1], currently the most popular
of all TCPs. The congestion window in these protocols is
based on the Additive Increase Multiplicative Decrease
(AIMD) algorithm: congestion window size is increased by
one packet per acknowledgement (ACK) but is halved if a
source receives three duplicate ACK signals or does not
receive any ACK within a given round-trip time (see [1]).
Since the development of TCP Reno, several researchers
have suggested additional TCP functions to improve
network performance [2].

Whereas these algorithms operate at the source side,
AQM is implemented at the link side, especially for
incipient congestion avoidance. In other words, AQM
provides congestion information acquired from the link
side to the sources. The objective of an AQM is primarily
to proactively respond to network congestion as its queue
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begins to rise. Rather than simply waiting for a congested
queue to overflow and then tail drop all subsequently
arriving packets, it maintains queue size at a predefined
level 1n the router. Recently, AQM is significantly focused
especially from control engineers since its structure is
similar to typical control systems. We separately provide a
review of the hiterature related to the AQM system.

We present a more sophisticated adaptive control
strategy for AQM 1n TCP networks using a dynamic
artificial neural network AQM control. The control can
promptly adapt its operation to the nonlinear time-varying
and stochastic nature of TCP networks. Neural networks
have been widely applied in the last two decades in a
variety of engineering fields such as signal processing,
process control, communication systems, etc. [3]. They are
iteratively trained by a proper learning algorithm to
minimize a selected performance measure. As a result,
neural networks are able to determine the optimal AQM
system parameter values autonomously after adequate
traiing. Following training, the neural network operates as
an adaptive and robust controller that can provide excellent
performance even for environmental conditions not
included in the training data set.

The dynamic neural network controller presented in this
paper is trained to regulate the actual queue size close to a
reference value determined by network requirements. After
training, the neural network operates as an adaptive
controller under changes in TCP dynamics. We choose a
multi-layer recurrent (including feedback) dynamic neural
model because of its well-known advantages. This model
has been popular since the mid 1990°s in many applications
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for dynamical time-varying and nonlinear systems [4].
There are mainly two methods for training recurrent neural
networks: a back-propagation-trough-time algorithm [5]
and a real-time recurrent learning algorithm [6]. For
simplicity, we derive a learning procedure by the general
back-propagation (BP) method [3]. To evaluate the
proposed neural AQM, a TCP network topology including
a simple bottleneck, two routers on the link side, and
multiple TCP sessions, is considered. We use the TCP
system model of [7] for our neural AQM analysis and
illustrate the advantages of our proposed methodology as
compared to RED and PI-based AQM.

The outline of this paper is as follows: Literature review
is provided in Section 2. We present our neural network
AQM for TCP congestion control in Section 3. A learning
algorithm with BP is derived for this model in Section 4.
Simulation study and conclusion are Section 5 and 6,
respectively.

2. Literature Review

RED [8] 1s a popular example of an AQM scheme. In
RED, the router calculates the drop probability using a
current queue size. The incoming packets are passed,
dropped, or marked, based on this probability. By
discarding or marking a single packet, the router sends an
implicit or explicit warning to the source. As a response to
the warning, the source is expected to adjust the congestion
window size to reduce its transmission rate. The drop
probability is often linearly proportional to queue length.

Although RED is an effective TCP congestion control [9],

it can induce network instability and major traffic
disruption if not properly configured. Hence, optimal
parameter selection for RED design under different
congestion scenarios has been a problem. Moreover, even
if optimally selected, the parameter values must be
adjusted in real-time implementations because TCP
dynamics change with the number of active TCP flows.
Many studies have addressed optimal parameter
selection for RED and its variants. Floyd et al. proposed
appropriate parameter ranges in [10] and presented an
adaptive RED in which the best parameter settings are
based upon a traffic mix flowing through the router [11]. In
[12], the authors proposed Random Exponential Marking
(REM) as a modification to RED. Their aim was to
stabilize the input rate around the link capacity and
maintain average queue size around a small reference level.
Feng et al. [13] presented a self-configuring RED that
adjusted the maximum drop probability according to the
past history of the average queue size. They also proposed
BLUE [14], a new AQM mechanism. BLUE uses buffer
overflow and link idle events, together with average queue

size, to control congestion. Another approach, Stabilized
RED (SRED) {15], computes the drop probability based on
the estimated number of active TCP flows and the
instantaneous average queue size.

In recent years, control-theoretic AQM approaches have
been proposed, mostly using linear classical control. In [7],
design guidelines were proposed for choosing AQM
parameters based on Proportional (P) and Proportional-
Integral (PI) control. The authors linearized the nonlinear
differential equation TCP network model of [16] at an
operating point to derive a transfer function for P and PI
controller design. Their AQM scheme was compared to
RED and found to be superior.

Kim and Low [17] formulated an AQM design problem
for stabilizing a given TCP network described by state-
space models, as well as proposed Proportional-Derivative
(PD) and Proportional-Integral-Derivative (PID) AQM
strategies. In [18], Dynamic-RED (DRED) was proposed
to stabilize queue dynamics even if the number of active
TCP connections is dynamically varied. DRED aims to
maintain queue size close to a reference queue level by a
discrete integral control approach. Recently, more complex
control methodologies have been proposed for AQM. Quet
and Ozbay [19] applied H,, controller to AQM using the
linearized TCP model of [16]. They derived the transfer
function of the controller and showed through computer
simulation that the proposed AQM was superior to PI
control and RED.

We note that the choice of control parameters 1s the key
to the satisfactory performance of a feedback control
system. However, in practice, parameter choices for the
nominal model may be suboptimal due to system
uncertainty or perturbation. Thus, parameter values must
be adjusted to adapt to operational changes. In addition,
most control-theoretic AQM proposed to date are based on
linear models while TCP networks are nonlinear time-
varying stochastic systems.

3. Design of Neural AQM

The block diagram of TCP congestion control with the
neural network AQM proposed in this paper is shown in
Fig. 1. In Fig. 1, the congestion window size, w of the TCP
source is determined by the probability, p calculated from
the neural network. Queue dynamics at the link side are
affected by w. The neural network control system
minimizes the error signal, e between the actual queue size,
g and the reference queue target value, ¢ . The loss
probability, p is the control input to the TCP source. The
neural network model used in this paper is shown in Fig. 2.
We select a dynamic recurrent neural model including one
feedback connection and a three-layer perceptron. The
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input vector of this neural network includes the error signal,
e and the probability, p as a feedback signal from its output.
Thus, the input vector, u is given by u = [e p]” and the
weight matrix in the first layer is ¥ = [Vj]xy..m 1. Where
m denotes the number of nodes in the second layer, and the
first column and the second column are related to the error
signal and the feedback probability, respectively. The
weight vector in the second layer is = [y #,]". Thus, the
dynamic behavior of the network is given by y; = @y +
¥ (Vu) + b where o is the feedback gain, k denotes discrete
time, and b is a bias connected with unit input. Finally, the
network output is obtained from the activation function:

1
1+ exp(-ay)

p=¢()=

where a 1s a non-negative constant scaling factor.

e p w

Neural | TCP —-—»  Router - g

Network Source

Fig. 1. Neural network AQM of TCP network

Fig. 2. Recurrent neural network for AQM

4. Learning Algorithm

The neural network designed in Section 3 must be
trained to optimize a TCP network performance measure.
During network training, the weights and the bias are
iteratively updated until they reach their optimal values. In
this section, we present a BP learning algorithm for the
proposed network and derive the rules for updating the
network weights and bias. The training objective is to
minimize the error signal J defined as

T=~{a"~qf O
2

Adjustments of the weight matrix ¥V, the weight vector

and the bias b, are governed by the delta rule as follows

Av, =-n g‘v] 2)

¥

3

Ayf:_ﬂaa_J ( )
Vi

Ab=—77—a-‘-]— (4)
ob

where 7 is the learning rate, i=1,---;m, and j=1, 2. The
partial differential equations in the right side of (2)-(4) are
expanded respectively by using the chain rule as

oJ o&Joqdp oy (5)
dv, ©6q dp oy ov,
oJ 0J 0q op oy (6)
dy, 0q dp oy 3y,
oJ _ cJ 0q dp Oy (7)
ob 0Og Op oy ob

We calculate the three common terms in (5)-(7) using (1)
and the following approximations [20]

oJ _ . 8
% (¢ ~9) (8)
dp _  aexp(-ay) 9)
o [t+exp-ay)f

oq  q(k)—qk—1) (10)

&p  p(k)— plk—1)

These approximations describe the Jacobian of the TCP
system. We use an approximation of the TCP system
equation assuming that it is not provided. The approximate
derivative in (10) is determined by changing the input p
and the output g [20]. The right hand sides of (5), (6), and
(7) include derivatives of y obtained using the following
equations

k+1 2
o+l (13)
ob(k)

By substituting (8)-(13) in (2)-(4), we finally obtain the
update rules

Av, =ndyu, (14)
Ay, =083 v, (15)
Ab=nd (16)

where

R ) ][ aexp(-a) ] a7
(q q( pk)— ptk -1) [1 + GXP(_ay)]




288 Internet Traffic Control Using Dynamic Neural Networks

5. Simulation Study

We conducted a simulation study to evaluate the
performance of neural network AQM. We considered the
TCP network topology of Fig. 3, including a simple
bottleneck link between two routers and numérous TCP
flows.

Bottleneck Link
Router Router

Sources Destinations

Fig. 3. TCP network model

The mathematical model used for AQM design and
simulation is a fluid-flow expression [16]. The model
describes the dynamics of a queue and a congestion
window with the nonlinear differential equations

i L wOWE=RE) o (18)

O=20 " 2ra-R@y P¢TRO

i) {N(z‘)x(r)—C if N(Ox()=C (19)
0 otherwise

where C is a link capacity, N is the number of TCP
connections, x(?) is a transmission rate defined as w(7)/R(¥),
and the round-trip time R(?) is calculated by R(¢) = q(?)/C
+7 where 7 is a random propagation delay time. The
specifications of the TCP network are from [7], but some
parameter values are modified for our simulation scenarios.
We select the packet size as 512 bytes, C as 15 Mb/sec, and

a maximum ¢ in a router as 800 packets. 7 is uniformly
distributed in [0.16, 0.24] sec.

We simulate RED and PI control under identical
simulation scenarios as our control for comparison
purposes. We selected optimal parameter values for RED
and PI control from iterative numerical analyses using (18)
and (19) under the given TCP specifications with 240 TCP
connections. In RED, the minimum and maximum
thresholds of an averaging queue size are 200 and 250
packets respectively, the maximum drop probability is 0.1,
and the weight in the moving average equations for
computing the averaging queue is 0.03. The PI controller
used 1n this simulation is given by

p=ket)+k j e(t)dt (20)

where £, is the proportional gain and £; is the integral gain.

We selected kp=5><10'7 and k=5%10" for our simulations,
which are of the same order as the values of [7] and [19].

For the AQM neural network, we use three nodes in the
hidden layer and a learning rate of 0.1. The 1nitial values of
the weights in the first and second layers, and the bias,
were uniformly distributed in [—1, 1]. The neural network
was trained to determine the optimal weights and bias
under the same simulation environment as RED and PI
AQM. After iterative network training with randomly
chosen initial weights and bias, the optimal weights that
minimize our control performance measure were

[-0.5536 —0.4417 |

V=|-0.4545 —-0.6853 (21)
| 02207 -0.7065

y =[0.3902 0.7771 0.3087] (22)

and the bias b was 0.8444. We ran four simulation
scenarios to evaluate the three different AQM approaches:
RED, PI control, and neural network control. We also
tested the robustness and adaptive capacity of the three
schemes. To illustrate dynamic queue responses applying
these AQM methods, we solve the differential equations in
(18) and (19) numerically. |

Case 1: We used 240 TCP flows (N=240) and a reference
queue size of 200 packets for PI control and neural AQM.
Time histories of the queue size for the three AQMs are
revealed in Fig. 4. We observe an initial overshoot in all
three AQMs after which the responses drop to their steady-
state values. The overshoot saturates at 800 packets due to
the maximum quecue size in the router. In the steady state,
large oscillations continue for RED while the responses for
PI control and neural AQM oscillate very closely to the
reference level. PI and neural AQM control have
considerably different transient responses. For PI control,
the settling time is about 25 sec and is three times that of
the necural AQM, and transient saturation occurred as in
RED. This behavior is a very serious problem that can
potentially result in network congestion especially when
traffic status changes rapidly. By contrast, neural AQM has
a much faster response but does not result in saturation.
The comparison indicates that neural AQM provides stable
control and a better transient response than PI-based AQM.

Case II-1: In recal-time TCP implementations, the number
of TCP flows varies randomly. Thus, we simulated the
system with time-varying TCP flows, 1.e., the number of
TCP connections was varied. We assume that N 1s
progressively increased by 100 every 50 sec, i.e. N =240 in
[0, 50] sec, N =340 in [50, 100] sec, N =440 in [100, 150]
sec, and N =540 in [150, 200] sec. The reference queue size
in PI control and neural AQM is still set to 200 packets. Fig.
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Fig. 4. Queue dynamics for fixed N

5 presents the queue dynamics for this simulation scenario.
Fig. 5 (a) shows that the response in RED is very similar to
Case 1. In Fig. 5(b), both PI and neural AQM still have the
initial overshoots at the starting time as well as-at the times
when N 1s changed. The response for PI control initially
saturates and has a larger settling time than neural AQM.
For both, the overshoot increases while the undershoot
decreases as N increases. These results demonstrate that

neural AQM outperforms PI AQM for dynamic reference
queue level.

Case I1-2: This example is the opposite scenario of Case
[I-1. In this case, the number of TCP flows are dynamically
decreased, that is, N=540 in [0, 50], N=440 in [50, 100],
N=340 1n [100, 150], and N=240 in [150, 200]. Time
histories of the queue size for these three AQMs are plotted
in Fig. 6. In this case, undershoots occurred in both PI and
neural AQM but we again observe that the neural AQM has
a superior transient response to Pl-based AQM. The
superior transient response of the proposed solution in this
case directly explains the higher throughput compared to
PI-based AQM because the system can quickly adjust itself
to fully utilize the available bandwidth due to less traffic.

Queue size [Packets])
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D- FIREN B eh g g AL AT )-8 AR 5141

0 >0 timje?gec)
(a) RED
am .._';_. —_—
e —— Plcontrol |,
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Queue size [Packets]
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(b) PI and neural AQM

Fig. 5. Queue dynamics for increasing N

Case III: The simulation in this case is for comparisons of
the two feedback control schemes: Pl-based AQM and
neural AQM. RED is not included because it is not a
feedback control AQM scheme. We vary the reference
queue size, but keep N fixed at 240. We set a reference
queue level, q* as 200 packets both in [0, 50] sec and
[100,150] sec, and as 400 packets both in [50,100] and
[150,200] sec. Fig. 7 shows the simulation results for the
queue dynamics. These results indicate that neural AQM
has better performance than PI control for varying
reference queue size.

Table 1 presents the mean values and variances of the
throughput and the queue size for each AQM. The queue
size of neural AQM has the smallest mean values and the
largest throughput in all simulations. Higher throughput
implies more efficient utilization of the network link. The
mean queue size of neural AQM remains closer to the
reference queue value than PI control, and the variance of
its throughput is the smallest for all cases. Hence, neural
AQM provides more stable queue management.
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Table 1. Simulation results for RED, PI control, and neural

AQM
Mean Variance
Casej Control | Queue size  Throughput | Queue size  Throughput
[Packets] [Packets/sec] | [Packets] [Packets/sec]
RED 232.11 15.29 4.44x10* 20.30
I PI 214.38 15.96 1.17x10* 3.73
NN 201.26 16.06 3.70x10° 3.08
RED 248.35 10.63 4.03x10* 18.06
Im-1{ PI 262.99 10.78 1.56x10* 15.03
NN 214.80 10.89 5.15x10° 13.06
RED 248.03 10.61 4.14x10* 18.53
II-2| PI 214.28 10.79 3.36x10* 12.64
NN 201.21 10.97 8.59x10° 12.37
- PI 311.89 = 1594 1.90x10* 3.43
NN 300.50 16.00 1.34x10* 2.66

6. Conclusions

We presented a novel AQM methodology using a
dynamic neural network for TCP congestion control. The
neural network acts as a feedback controller to maintain the
actual queue size close to a reference target. The neural
network is trained by a BP algorithm. We applied the
neural AQM to a single bottleneck network supporting
multiple TCP flows. Four scenarios were examined in the
simulation experiments to compare neural AQM to RED

~ and PI-based AQM. While PI AQM resulted in queue

saturation and larger overshoot, neural AQM reduced
overshoot and eliminated saturation. Neural AQM was
more stable with no packet loss due to congestion.
Especially for the case of time-varying TCP dynamics, the
neural AQM was superior. We conclude that neural AQM
is an effective adaptive controller and provides higher
Quality of Service (QoS) in TCP networks. Future work
will extend our results to more complex network scenarios,
such as heterogencous RTTs, short TCP connections, noise
disturbance networks, and different TCP data streams and
will include various simulation scenarios using a network
simulation tool such as OPNET to verify our results.
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