• Title/Summary/Keyword: Trading Algorithm

Search Result 84, Processing Time 0.022 seconds

Performance Analysis on Day Trading Strategy with Bid-Ask Volume (호가잔량정보를 이용한 데이트레이딩전략의 수익성 분석)

  • Kim, Sun Woong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.7
    • /
    • pp.36-46
    • /
    • 2019
  • If stock market is efficient, any well-devised trading rule can't consistently outperform the average stock market returns. This study aims to verify whether the strategy based on bid-ask volume information can beat the stock market. I suggested a day trading strategy using order imbalance indicator and empirically analyzed its profitability with the KOSPI 200 index futures data from 2001 to 2018. Entry rules are as follows: If BSI is over 50%, enter buy order, otherwise enter sell order, assuming that stock price rises after BSI is over 50% and stock price falls after BSI is less than 50%. The empirical results showed that the suggested trading strategy generated very high trading profit, that is, its annual return runs to minimum 71% per annum even after the transaction costs. The profit was generated consistently during 18 years. This study also improved the suggested trading strategy applying the genetic algorithm, which may help the market practitioners who trade the KOSPI 200 index futures.

Cryptocurrency automatic trading research by using facebook deep learning algorithm (페이스북 딥러닝 알고리즘을 이용한 암호화폐 자동 매매 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.359-364
    • /
    • 2021
  • Recently, research on predictive systems using deep learning and machine learning of artificial intelligence is being actively conducted. Due to the development of artificial intelligence, the role of the investment manager is being replaced by artificial intelligence, and due to the higher rate of return than the investment manager, algorithmic trading using artificial intelligence is becoming more common. Algorithmic trading excludes human emotions and trades mechanically according to conditions, so it comes out higher than human trading yields when approached in the long term. The deep learning technique of artificial intelligence learns past time series data and predicts the future, so it learns like a human and can respond to changing strategies. In particular, the LSTM technique is used to predict the future by increasing the weight of recent data by remembering or forgetting part of past data. fbprophet, an artificial intelligence algorithm recently developed by Facebook, boasts high prediction accuracy and is used to predict stock prices and cryptocurrency prices. Therefore, this study intends to establish a sound investment culture by providing a new algorithm for automatic cryptocurrency trading by analyzing the actual value and difference using fbprophet and presenting conditions for accurate prediction.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

파산절차에 관한 경제학적 분석

  • Ryu, Geun-Gwan
    • KDI Journal of Economic Policy
    • /
    • v.23 no.1_2
    • /
    • pp.149-191
    • /
    • 2001
  • In this paper, we propose a new bankruptcy algorithm. The proposed algorithm is comprised of four tasks. Task A is the procedure of soliciting bids, Task B is the procedure of allocating claims, Task C is the procedure of trading claims, and Task D is the procedure of exercising options and holding shareholders' meeting. Tasks A, B, and D are based on Bebchuk(1988) and Aghion, Hart, ad Moore(1992). This paper adds Task C, the procedure of trading claims. Claims are in the form of options which are written on the new shares of the bankrupt firm. Trading options expedites the process of finding the value of the bankrupt firm, and also it mitigates the problem of incomplete capital market by expanding the pool of new investors.

  • PDF

Performance Comparison of Machine Learning in the Various Kind of Prediction (다양한 종류의 예측에서 머신러닝 성능 비교)

  • Park, Gwi-Man;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.169-178
    • /
    • 2019
  • Now a day, we can perform various predictions by applying machine learning, which is a field of artificial intelligence; however, the finding of best algorithm in the field is always the problem. This paper predicts monthly power trading amount, monthly power trading amount of money, monthly index of production extension, final consumption of energy, and diesel for automotive using machine learning supervised algorithms. Then, we find most fit algorithm among them for each case. To do this we show the probability of predicting the value for monthly power trading amount and monthly power trading amount of money, monthly index of production extension, final consumption of energy, and diesel for automotive. Then, we try to average each predicting values. Finally, we confirm which algorithm is the most superior algorithm among them.

Bitcoin Algorithm Trading using Genetic Programming

  • Monira Essa Aloud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.210-218
    • /
    • 2023
  • The author presents a simple data-driven intraday technical indicator trading approach based on Genetic Programming (GP) for return forecasting in the Bitcoin market. We use five trend-following technical indicators as input to GP for developing trading rules. Using data on daily Bitcoin historical prices from January 2017 to February 2020, our principal results show that the combination of technical analysis indicators and Artificial Intelligence (AI) techniques, primarily GP, is a potential forecasting tool for Bitcoin prices, even outperforming the buy-and-hold strategy. Sensitivity analysis is employed to adjust the number and values of variables, activation functions, and fitness functions of the GP-based system to verify our approach's robustness.

Development of Optimal Thermal Transfer Calculation Algorithm by Composition of Thermal Transfer Mechanism among Integrated Energy Operators (집단에너지 사업자간의 열연계 메커니즘 구성에 의한 최적 열연계 산정 알고리즘 개발)

  • Kim, Yongha;Kim, Seunghee;Hyeon, Seungyeon
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 2017
  • Since the heat is not as fast as the electric power and the loss is relatively large compared to the electric power, it is not realistic to operate the thermal transfer system with on operation center like electric power trading. In the case of the Korea District Heating Corporation, where all the thermal transfer are currently being made, only two or four adjacent heat-generating power plants are being the heat trading. Therefore, In this paper, we concluded that it is appropriate to divide the integrated operation center for heat trading into several regions, to operate the hub integrated operation power plant in each region to reflect the characteristics of the heat medium and proposed the thermal transfer mechanism among integrated energy operators. Then, we have developed an algorithm that can optimize the heat transaction for the proposed mechanism and applied it to the actual operators to verify the usefulness of the proposed algorithm.

Cryptocurrency Auto-trading Program Development Using Prophet Algorithm (Prophet 알고리즘을 활용한 가상화폐의 자동 매매 프로그램 개발)

  • Hyun-Sun Kim;Jae Joon Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.105-111
    • /
    • 2023
  • Recently, research on prediction algorithms using deep learning has been actively conducted. In addition, algorithmic trading (auto-trading) based on predictive power of artificial intelligence is also becoming one of the main investment methods in stock trading field, building its own history. Since the possibility of human error is blocked at source and traded mechanically according to the conditions, it is likely to be more profitable than humans in the long run. In particular, for the virtual currency market at least for now, unlike stocks, it is not possible to evaluate the intrinsic value of each cryptocurrencies. So it is far effective to approach them with technical analysis and cryptocurrency market might be the field that the performance of algorithmic trading can be maximized. Currently, the most commonly used artificial intelligence method for financial time series data analysis and forecasting is Long short-term memory(LSTM). However, even t4he LSTM also has deficiencies which constrain its widespread use. Therefore, many improvements are needed in the design of forecasting and investment algorithms in order to increase its utilization in actual investment situations. Meanwhile, Prophet, an artificial intelligence algorithm developed by Facebook (META) in 2017, is used to predict stock and cryptocurrency prices with high prediction accuracy. In particular, it is evaluated that Prophet predicts the price of virtual currencies better than that of stocks. In this study, we aim to show Prophet's virtual currency price prediction accuracy is higher than existing deep learning-based time series prediction method. In addition, we execute mock investment with Prophet predicted value. Evaluating the final value at the end of the investment, most of tested coins exceeded the initial investment recording a positive profit. In future research, we continue to test other coins to determine whether there is a significant difference in the predictive power by coin and therefore can establish investment strategies.

Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price (분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과)

  • Kim, S.W.
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.157-177
    • /
    • 2022
  • Investors are trading stocks by keeping a close watch on the order information submitted by domestic and foreign investors in real time through Limit Order Book information, so-called price current provided by securities firms. Will order information released in the Limit Order Book be useful in stock price prediction? This study analyzes whether it is significant as a predictor of future stock price up or down when order imbalances appear as investors' buying and selling orders are concentrated to one side during intra-day trading time. Using classification algorithms, this study improved the prediction accuracy of the order imbalance information on the short-term price up and down trend, that is the closing price up and down of the day. Day trading strategies are proposed using the predicted price trends of the classification algorithms and the trading performances are analyzed through empirical analysis. The 5-minute KOSPI200 Index Futures data were analyzed for 4,564 days from January 19, 2004 to June 30, 2022. The results of the empirical analysis are as follows. First, order imbalance information has a significant impact on the current stock prices. Second, the order imbalance information observed in the early morning has a significant forecasting power on the price trends from the early morning to the market closing time. Third, the Support Vector Machines algorithm showed the highest prediction accuracy on the day's closing price trends using the order imbalance information at 54.1%. Fourth, the order imbalance information measured at an early time of day had higher prediction accuracy than the order imbalance information measured at a later time of day. Fifth, the trading performances of the day trading strategies using the prediction results of the classification algorithms on the price up and down trends were higher than that of the benchmark trading strategy. Sixth, except for the K-Nearest Neighbor algorithm, all investment performances using the classification algorithms showed average higher total profits than that of the benchmark strategy. Seventh, the trading performances using the predictive results of the Logical Regression, Random Forest, Support Vector Machines, and XGBoost algorithms showed higher results than the benchmark strategy in the Sharpe Ratio, which evaluates both profitability and risk. This study has an academic difference from existing studies in that it documented the economic value of the total buy & sell order volume information among the Limit Order Book information. The empirical results of this study are also valuable to the market participants from a trading perspective. In future studies, it is necessary to improve the performance of the trading strategy using more accurate price prediction results by expanding to deep learning models which are actively being studied for predicting stock prices recently.

Optimization of Stock Trading System based on Multi-Agent Q-Learning Framework (다중 에이전트 Q-학습 구조에 기반한 주식 매매 시스템의 최적화)

  • Kim, Yu-Seop;Lee, Jae-Won;Lee, Jong-Woo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.207-212
    • /
    • 2004
  • This paper presents a reinforcement learning framework for stock trading systems. Trading system parameters are optimized by Q-learning algorithm and neural networks are adopted for value approximation. In this framework, cooperative multiple agents are used to efficiently integrate global trend prediction and local trading strategy for obtaining better trading performance. Agents Communicate With Others Sharing training episodes and learned policies, while keeping the overall scheme of conventional Q-learning. Experimental results on KOSPI 200 show that a trading system based on the proposed framework outperforms the market average and makes appreciable profits. Furthermore, in view of risk management, the system is superior to a system trained by supervised learning.