• Title/Summary/Keyword: Tractor Cabin

Search Result 14, Processing Time 0.035 seconds

Noise Reduction in Tractor Cabin (트랙터 운전실의 소음 저감에 관한 연구)

  • Kim, Wonjin;Eun, Myoungwoo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.380-384
    • /
    • 2014
  • This study focused on identifying the major noise source in a tractor cabin using experimental methods. The noise levels in a tractor cabin for different engine revolution speeds were analyzed to identify the noise source. The results showed that the power steering unit (PSU) was the major noise source in a tractor cabin. The PSU was moved to the outside from the inside of the cabin in order to reduce the noise in the tractor cabin. As a result, the noise levels on the left and right sides of the operator in the tractor cabin were reduced by 6.8 and 3.9 dB, respectively. Finally, the window method was introduced to evaluate the contribution of the transmission noise. The orders of significance in the tractor noise were the front, bottom, and left area, successively.

Optimization of the Suspension Design to Reduce the Ride Vibration of 90kW-Class Tractor Cabin (90kW급 트랙터 캐빈의 승차 진동 저감을 위한 현가장치 설계 최적화)

  • Chung, Woo-Jin;Oh, Ju-Sun;Park, Yoonna;Kim, Dae-Cheol;Park, Young-Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.91-98
    • /
    • 2017
  • This study was conducted to optimize the spring constant and the damping coefficient, which are design parameters of the tractor cabin suspension system, to minimize the ride vibration. A 3D tractor MBD (multi-body dynamics) model with a cabin suspension system was developed using a dynamic analysis program (Recurdyn). Using the developed model and optimization algorithm, the spring constant and the damping coefficient, which are the design parameters of the cabin suspension for the tractor, was were optimized so thatto minimize the maximum overshoot for the vertical displacement of the cabin was minimized. The percent maximum overshoot of the tractor cabin was simulated for the 13 initial models, which were obtained using the ISCD-II method, and for the 3 additional SAO models presented in the optimization algorithm software. The model that represents with the smallest percent maximum overshoot among the 16 models was selected as the optimized model. The percent maximum overshoot of the optimized model was about approximately 5% lower than that of the existing model.

Structural Analysis of an Agricultural Tractor Cabin for OECD Certification (OECD 인증을 위한 농업용 트랙터 캐빈의 구조 해석)

  • Kim, Hyun-Jin;Kwon, Young-Doo;Ha, Chang-Wook;Jung, Han-Kyong;Goo, Nam-Seo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.431-436
    • /
    • 2001
  • A finite analysis of tractor cabin for ROPS design was performed. Finite element model was made to take account of the tractor cabin structures. Four tests were defined in OECD standard; (1) longitudinal loading (2) rear crushing test (3) side loading (4) front crushing test. The results of four independent analyses and sequential analysis are compared with test results.

  • PDF

Effects of Configurational Parameters on the Dynamic Characteristics of a Cabin (캐빈 동특성에 대한 형상변수의 기여도 해석)

  • Ahn, Tae Kil;Ahn, Se Hwan;Park, Min Su;So, Byeong Eob;Kim, Joong Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.18-22
    • /
    • 2014
  • A new concept tractor is developed, which can conduct multi-functional complex tasks such as excavating and working with attached various equipments. A cabin of the agricultural tractor is designed to protect the driver from vibration transmitted due to the irregular ground and overturning of the tractor. In this paper, the dynamic characteristic of the cabin is identified through finite element analysis and effects of configurational parameters are investigated to insure the dynamic stiffness of the cabin.

Structural Analysis of a Tractor Cabin Considering Structure Production Error (제작 오차를 고려한 트랙터 캐빈의 구조 해석)

  • Park, Jang-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.155-160
    • /
    • 2017
  • A cabin of the agricultural tractor is designed to protect the driver from vibration transmitted due to the irregular ground and overturning of the tractor. The cabin is usually manufactured by welding frames and plates. Consequently, the welded state of the frame and plate affects the stiffness of the cabin structure. In this paper, the static and dynamic stiffness characteristics of the cabin are identified through finite element analysis and effects of the structure production error are investigated to insure the structural stiffness of the cabin.

Optimal Design of Tractor Cabin Frame Using Design of Experiment of Taguchi (다구찌 실험계획을 이용한 트랙터 캐빈 프레임의 최적설계)

  • Jang, Hyo-Sung;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7377-7384
    • /
    • 2015
  • Agricultural tractors must have a function of ROPS to protect drivers under roll-over accident. In this study, finite element analyses and an optimal design were performed to reduce the cost and the production period of the cabin frame of a tractor to pass the ROPS strength test. To confirm the pass of ROPS strength test of an initial design model, the results of deformation and principal strain from the analyses were evaluated. To reduce the weight of the cabin frame, design of experiment of Taguchi was implemented, and an optimal design was obtained. The weight of the optimal design model was reduced by 7% comparing with the initial design model.

Shape Optimal Design of Anti-vibration Rubber Assembly in Tractor Cabin Using Taguchi Method (다구찌법을 이용한 트랙터 캐빈 방진고무의 형상최적설계)

  • Seo, Ji-Hwan;Lee, Boo-Yoon;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2019
  • We performed shape optimization of an anti-vibration rubber assembly which is used in the field option cabin of agricultural tractors to improve the vibration isolation capability. To characterize the hyper-elastic material property of rubber, we performed uniaxial and biaxial tension tests and used the data to calibrate the material model applied in the finite element analyses. We conducted a field test to characterize the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, we performed static analyses to derive the load-displacement curve of the anti-vibration rubber assembly. The stiffness of the rubber assembly could be calculated from this curve and was input to the harmonic analyses of the cabin. We compared the results with the test data for verification. We utilized Taguchi's parameter design method to determine the optimal shape of the anti-vibration rubber assembly and found two distinct shapes with reduced stiffness. Results show that the vibration at the cabin frame was reduced by approximately 35% or 47.6% compared with the initial design using the two optimized models.

Experimental Study of the Dynamic Characteristics of Rubber Mounts for Agricultural Tractor Cabin

  • Choi, Kyujeong;Oh, Jooseon;Ahn, Davin;Park, Young-Jun;Park, Sung-Un;Kim, Heung-Sub
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.255-262
    • /
    • 2018
  • Purpose: To obtain the dynamic characteristics (spring stiffness and damping coefficient) of a rubber mount supporting a tractor cabin in order to develop a simulation model of an agricultural tractor. Methods: The KS M 6604 rubber mount test method was used to test the dynamic characteristics of the rubber mount. Of the methods proposed in the standard, the resonance method was used. To perform the test according to the standard, a base excitation test device was constructed and the accelerations were measured. Results: Displacement transmissibility was measured by varying the frequency from 3-30 Hz. The vibration transmissibility at resonance was confirmed, and the dynamic stiffness and damping coefficient of the rubber mount were obtained. The front rubber mount has a spring constant of 1247 N/mm and damping ratio of 3.27 Ns/mm, and the rear rubber mount has a spring constant of 702 N/mm and damping ratio of 1.92 Ns/mm. Conclusions: The parameters in the z-direction were obtained in this study. In future studies, we will develop a more complete tractor simulation model if the parameters for the x- and y-directions can be obtained.

Finite Element Analysis of an Agricultural Tractor Cabin based on the OECD Standard(code 4) (OECD규정(제4항)에 기초한 농업용 트랙터 캐빈의 유한요소 해석)

  • 하창욱;김현진;구남서;권영두
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.305-314
    • /
    • 2003
  • The ROPS of an agricultural tractor is designed to protect its driver when the tractor overturns. Although the current OECD tests to determine whether the ROPS meets the requirements of the OECD regulation are desirable, they need long time to test. We experimental time and effort by using CAE. We conducted a finite element analysis for the ROPS design of a Dae-Dong tractor cabin in an attempt to reduce the design and manufacturing time. This study shows the interpretative skill using MARC(v.2000) for designing ROPS and difference between the results of testing and FEA. Design process is generally divided into two phases: a concept and a detail design. The concept design uses simple analysis to predict structural behavior, whereas the detail design involves a finite element analysis performed by the results of the concept design. This study focused on the detail design and used Patran(v.2000r2) and MARC(v.2000) of the MSC software corporation. The model consisted of 4812 elements and 4582 nodes. Four tests. specified in the OECD standards, were performed: (1) longitudinal loading test (2) rear crushing test (3) side loading test (4), and front crushing test. Independent analyses were also performed for each test, along with a sequential analysis. When compared, the results of the independent and sequential analyses were found to be similar to the test results.