• Title/Summary/Keyword: Traction power system

Search Result 353, Processing Time 0.027 seconds

A Study on the Application of the DVR in AC Electric Traction System (전기철도계통에 순간전압강하 보상장치 적용에 관한 연구)

  • 최준호;김태수;김재철;문승일;남해곤;정일엽;박성우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.95-104
    • /
    • 2003
  • The electric traction systems are quite differ from general power systems which is single-phase and heavy load. Therefore, there are inevitably power quality problems such as steady state or transient voltage drop, voltage imbalance and harmonic distortion. Among these problems, since steady-state volatge drop is the one of most important factor in electric power quality, many researches about on the compensation of volatge drop by using SVC(Static Var Compensator) and/or STACOM(Static Compensator) have been studied and proposed Also, it is expected that transient voltage drop(voltage sag) could affect the control and safety of high speed traction load. In this paper, voltage sag compensation of AT(Auto Transformer) feeding system are studied The detailed transient models of utility source, scott transformer, AT, and traction load are estabilished. The application of DVR(Dynamic Voltage Restorer) in electric traction system is proposed to compensate the voltage sag of traction network which is occured by the fault of utility source. It can be shown that application of the DVR in electric traction system is very useful to compensate the volatge sag from the result of related simulation works.

Analysis of conducted noise on modeling methods for loss of contact during traction of high-speed rail vehicle (고속전철 주행시 이선현상 모델링 방법에 따른 전도성 노이즈 해석)

  • Kim, Jae-Moon;Kim, Yang-Soo;Chang, Chin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.72-75
    • /
    • 2008
  • The Electromagnetic Interference(EMI) in railway applications is largely due to doing the power conversion for traction and Auxiliary system on the Highspeed Electric Multiple Unit-400X(HEMU-400X). In order to research on EMI in railway applications, it were included how much the HEMU-400X generates it and it has an effect on the equipments of electric system which resulted from Power Line Disturbance (PLD) phenomenon by the loss of contact during its running. In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF

A Propulsion Control System of IGBT Type for Electric Car (전동차용 IGBT형 추진제어장치의 개발)

  • Jeong, M.K.;Lee, K.J.;Bang, L.S.;Song, S.H.;Seo, K.D.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.642-645
    • /
    • 1997
  • This paper presents a propulsion control system for electric car to improve traction capability. The presented VVVF inverter was composed of as IGBT and the controller was full digitalized by using 32bit DSP. The improved PWM algorithms was adapted to improve traction characteristics. The system could be possible the higher reliablity, compact, light, low cost' and flexbility.

  • PDF

Harmonic Generation and System Response Chartcteristics in Electrified Railway(II) - Focused on Measurement and Analysis - (전기철도에서의 고조파 발생과 계통응답특성(II) - 고조파 측정분석을 중심으로 -)

  • Oh Kwang-Hae;Lee Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.499-504
    • /
    • 2003
  • Harmonic current originating from electric locomotives can be magnified due to the impedance characteristics of power supply circuit and bring about various problems. That is, electromagnetic interference with communication lines, operational trouble in signaling, overheat and/or vibration in power capacitor, mis-operation in protection relay and so on. Therefore, the exact assessment of the harmonic current flow must be undertaken at design and planning stage for the electric traction systems. For these reasons, this study propose a new approach to model and to analyse traction power feeding system focused on system response to current and voltage harmonic(PART I ). Measurements of harmonics are also performed for railway power supply systems under normal operation. Spectrum and distortion analyses in measurement data are variously described in PART II

  • PDF

The Real Time Measurement of Dynamic Radius and Slip Ratio at the Vehicle (차량에서 실시간 동반경 및 슬립율 측정)

  • Lee, Dong-Kyu;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.89-94
    • /
    • 2006
  • The tire delivering power generated from engine to the ground pulls a vehicle to move. Radius of tires is changeable due to elasticity that depends on the speed of vehicle and traction force. The main objectives on this study are real time measurement of dynamic radius and slip ratio according to the speed and traction force. The dynamic radius is proportional to speed and traction force. According to measurement, the dynamic radius is increased about 3mm under 100km/h compared to stop. It is also increased about 1.5mm when a traction force is supplied as much as 4kN compared to no load state at low speed. There is no strong relationship between slip ratio and vehicle speed. The slip ratio is measured up to 4% under WOT at first stage gear. Through this research, the method of measuring dynamic radius and slip ratio is set up and is expected to be applied to the measurement of traction force in chassis dynamometer or accelerating and climbing ability.

A Controller Design for Speed Control of the Switched Reluctance Motor in the Train Propulsion System (열차추진시스템에서 Switched Reluctance Motor의 속도제어를 위한 제어기 설계)

  • Kim, Sung-Soo;Kim, Min-Seok;Lee, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.3
    • /
    • pp.138-143
    • /
    • 2011
  • Electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending energy between motor blocks and traction motors. Currently, switched reluctance motors have been studied because the efficient is higher than induction motors. In this paper, model of the switched reluctance motor is presented and the PID controller is applied to the model for the speed control by using Simulink. Asymmetry converter is used for real-time control and system performance is demonstrated by simulating the speed of switched reluctance motor including PID controller.

Estimation and Measurement of the Traction return current on the electrified Gyeongbu line.

  • Kim, Y.K.;Yang, D.C.;Han, M.S.;Ryu, C.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.99.5-99
    • /
    • 2001
  • This study presents a simulation of the traction return current based on $2{\times}25kV$ power supply system in order to determine the impedance bond intensity of impulse type track circuit on the electrified Gyeongbu line. The results of the simulation enables us to measure the precise intensity of catenary current that returns to the substation through KTX (Korean Train Express) operated by $2{\times}25kV$ power supply system with common earth network. The combination of $2{\times}25kV$ and common earth network established on the electrified Gyeongbu line for the first time in Korea. We show that the relationships among the traction return current, earth current, and catenary current, and catenary current can be applied to this line in order to determine the optimal impedance bond intensity ...

  • PDF

Estimation of Traction return current and Impedance on Kyoungbu electrification line (경부선 전철화 구간에서의 귀선 전류 및 임피던스 예측)

  • 김용규;양도철;유창근
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.123-126
    • /
    • 2001
  • This study presents the simulation of the traction return current based on 2${\times}$25kV power supply system in order to determine the impedance bond intensity of impulse type track circuit on the Kyoungbo electrification line. The results of simulation enables us to measure the precise intensity of catenary current, returning to the substation through KTX (Korean Train Express) operated by 2${\times}$25kV power supply system with common earth network. In the wake of establishing 2${\times}$25kV and common earth network used in Korea for the first time, in particular, it is possible to determine the impedance bond intensity of impulse type track circuit, which is applicable to the Kyoungbo electrification line by specifying the relations among the traction return current, earth current, and catenary current.

  • PDF

A Single Phase PWM Converter for High Speed Traction System (고속전철용 단상 PWM 컨버터에 관한 연구)

  • Kim, Y.J.;Kim, D.S.;Lee, H.W.;Seo, K.D.;Kim, N.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.630-633
    • /
    • 1997
  • This paper describes a design of a single phase PWM converter for high speed train. Parallel operation and control method of four Quadrant PWM converters are described. Simulation and modelling of the converters is performed. Capacity of the converter/inverter and power circuit for high speed traction system designed. And harmonic contents of AC line current's are analyzed. The results of the simulation are presented.

  • PDF

A Traction System Control Method for 2 Motor Driven Electric Vehicle (독립 구동형 전기자동차의 추진 시스템 제어 기법)

  • 박정우;하회두;김흥근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.357-367
    • /
    • 1999
  • When traction system of 2-motor driven electric vehicle(EV) is consisted of two motors (IPMSM) . two inverters. and one traction controller, control performances of IPMSM for an electric vehicle is affected by parameter variation b because of large current magnitude and wide current phase angle. To solve this problem, new parameter estimator for L Ld and Lq is constructed by neu때 network technique. And new vector control algorithm with parameter estimator by n neural network is proposed for IPMSM.And also. an advanced traction control algorithm is proposed using fuzzy c controller in order to enhance the driveability oftwo-wheel drive EVs with fitted with a traction control system Performances of the proposed algorithm are examined by simulations and the experimental resul않 with respect to t the prototype IPMSM and EV.

  • PDF