• Title/Summary/Keyword: Traction power supply system

Search Result 97, Processing Time 0.025 seconds

Development and Test of Inverter for Regenerative Power of DC Traction Power Supply System (직류급전시스템의 회생 전력 활용을 위한 인버터 시험설비 개발 및 성능시험)

  • Kim, Joo-Rak;Han, Moon-Seob;Kim, Yong-Ki;Kim, Jung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.254-259
    • /
    • 2009
  • DC transit system has been adopted in the metropolitan area, Korea since 1974. Electric multiple (EMU) in this system always reiterates that acceleration and retardation. When EMU decelerates using electric breaking, regenerative power occurs. Regenerative power can be consumed in vicinity EMU on the same line or in resistor. If DC transit system has inverter for reusing regenerative power, Energy efficiency in DC transit system and the replacement cycle of brake shoe in EMU will be increased and dust due to mechanical braking decreased. This paper present the developed inverter for regenerative power and its test equipment. Test for developed inverter is performed at test equipment and is divided into three items, which are regeneration mode, active filter mode, and system link test.

A Study on the Power Factor Improvement of DC Power Regenerating Systems Using SVPWM (SVPWM을 이용한 직류전력 회생시스템의 역률개선에 관한 연구)

  • Ko, Young-Min;Chae, Soo-Yong;Seo, Young-Min;Jeong, Dae-Taek;Bae, Young-Wook;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.196-198
    • /
    • 2007
  • In the substations for traction systems and the large-scale discharging system of secondary batteries, the voltage of DC bus line goes up by the regenerated energy and the energy is usually wasted in resistor for system stability. This paper proposes the DC power regenerating system using a three phase PWM inverter. The proposed system can regenerate the excessive DC power from DC bus line to AC supply and control the power factor of AC supply to unity. To implement unity power factor, the magnitude of the inverter output voltage should be higher than that of AC supply and therefore SVPWM technique is adopted. Computer simulations are carried out to verify the validity of the proposed system.

  • PDF

A Study on the Design of Controller for Speed Control of the Induction Motor in the Train Propulsion System-1 (열차추진시스템에서 유도전동기의 속도제어를 위한 제어기 설계에 대한 연구-1)

  • Lee, Jung-Ho;Kim, Min-Seok;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.173-178
    • /
    • 2010
  • Electric railroad systems consist of supply system of electric power and electric locomotive. The electric locomotive is adapted to high speed driving and mass transportation due to obtaining high traction force. The electric locomotive is operated by motor blocks and traction motors. Train speed is controlled by suppling power from motor blocks to traction motors according to reference speed. Speed control of the electric locomotive is efficient by spending minimum energy between motor blocks and traction motors. Recently, induction motors have been used than DC and synchronized motors as traction motors. Speed control of induction motors are used by vector control techniques. In this paper, speed of the induction motor is controlled by using the vector control technique. Control system model is presented by using Simulink. Pulse is controlled by PI and hysteresis controller. IGBT inverter is used for real-time control and system performance is demonstrated by simulating the induction motor which has 210[kW] on the output power.

Analysis on Voltage and Cost of Substation with PWM Rectifier in DC Traction Power Supply System (PWM 정류기를 적용한 직류급전시스템의 전압강하 및 비용 평가)

  • Kim, Joorak;Park, Kijun;Park, Chang-Reung;Choo, Eun-Sang;Lee, Jun-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.640-645
    • /
    • 2015
  • Near surface transit system has should be constructed as installation cost of light rail transit with elevated track. So, distance between two substations is longer than conventional system. The long feeding distance results in severe voltage drop. This paper proposes a PWM rectifier instead of diode rectifier. The PWM rectifier has some advantages. This is able to control output voltage constantly to reduce voltage drop and to use regeneration power without additional inverter. This paper analyse on improved voltage profile and cost of substation with PWM rectifier. The analysis of voltage profile use PSIM, and the installation cost of substation with PWM rectifier is compared to substation with diode rectifier.

A review of the train position detection method for neutral section with energized condition (무절연구간을 위한 열차위치검지방식 검토)

  • Lee, Tae-Hoon;Lee, See-Bin;Hong, Hyun-Pyo;Lee, Hee-Soon;Park, Ki-Bum
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1100-1105
    • /
    • 2010
  • The high speed line and conventional line are a single-phase AC feeding system; and power supplies of different phases meet at SS(SubStation)s or SP(Sectioning Post)s. These sections should be negotiated with the main circuit breaker in the traction vehicle switched off, whereby the length of the neutral zone prevents the pantographs shunting adjacent overhead line section. In order for electric railway vehicles to make power running there, there must be a power supply changeover section (approx. for 1km), where a changeover switch changes a power supply to the other power supply of a train running direction sequentially. For a thorough changeover switching control, the precise train position detection is necessarily required. In this paper, to realize the ground-based train position detection method, configuration scheme of train position detection equipment is suggested by using track circuit and axle counter.

  • PDF

Prediction and Measurement for Harmonics on the Test Track of Seoul-Pusan High-speed Railway (경부고속철도 시험선 구간의 고조파예측 및 측정분석)

  • K. H. Oh;Lee, C. M.;M. S. Han;Lee, K. W.;K. S. Kwon;S. H. Chang;Kim, K. S.
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.100-107
    • /
    • 2000
  • This paper proposes a new model for harmonic analysis in 2${\times}$25㎸ traction power supply system including inverted feeder, contact line, rails and auto-transformer. The system model is based on four-port representation which is an extension of two-port network theory. In order to verify the proposed approach, we have analysed and tested real traction power feeding system focused on the amplification of harmonic current. The calculation results front tile proposed approach and the measurement data from the test are widely described in the paper.

  • PDF

A 20kHz Inverter for Inductive Charging System of Electric Vehicle (전기자동차 비접촉식 충전시스템을 위한 20kHz 인버터 설계)

  • Kim, Chul-Woo;Kim, Sang-Beom;Soh, Joon-Young;Lim, You-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1175-1176
    • /
    • 2011
  • Electric Vehicle Supply Equipment(EVSE) is a system or an equipment to supply electric power for charging the traction batteries on the electric vehicle. EVSEs are classified with a conductive charging system and an inductive charging system by the power transfer method. Inductive charging systems are necessary to use high frequency converters to increase the output power and to reduce the size of the charging systems. In this paper, a 20kHz inverter for inductive charging system has been designed and PSCAD/EMTDC have been used to simulate the output characteristics of the 20kHz inverter.

  • PDF

Development Status of the Regeneration Inverter System for Energy Saving in DC Electric Railway (전철시스템의 에너지절약 회생인버터시스템 개발 현황)

  • Kim, Yong-Ki;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1473-1478
    • /
    • 2007
  • In the respect of energy saving and reusing, it is necessary to reduce greenhouse gases emission and to enhance the operation efficiency in electric railway system. Recently, as the power electronics technologies are advanced, some countries have focused on the regenerative inverter to use regeneration energy on each line. When the electric tractions are stopped or slowed down, it is useful to supply the surplus energy to the power source by regenerative system, which increases its energy efficiency. Also, the generated energy can be supply to other tractions or equipments inside traction. Thus, it may help reduce construction cost of additional power plants. The purpose of this study is to describe the development status of the regenerative inverter system which suppress extra DC-line voltage and regenerate the energy instead of using a resister.

  • PDF

Magnetic Levitated Electric Monorail System for Flat Panel Display Glass Delivery Applications (FPD 공정용 Glass 이송 시스템을 위한 자기부상 EMS의 개발)

  • Lee, Ki-Chang;Moon, Ji-Woo;Koo, Dae-Hyun;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.566-572
    • /
    • 2011
  • In recent semiconductor and FPD (Flat Panel Display) manufacturing processes, high clean-class delivery operation is required more and more for short working time and better product quality. Traditionally SLIM (Single-sided Linear Induction Motor) is widely used in the liner drive applications because of its simplicity in the rail structure. A magnetically levitated (Maglev) unmanned vehicle with SLIM traction, which is powered by a CPS (Contactless Power Supply) can be a high precision delivery solution for this industry. In this paper unmanned FPD-carrying vehicle, which can levitate without contacting the rail structure, is suggested for high clean-class FPD delivery applications. It can be more acceptable for the complex facilities composed with many processes which require longer rails, because of simple rail structure. The test setup consists of a test vehicle and a rounded rail, in which the vehicle can load and unload products at arbitrary position commanded through wireless communications of host computer. The experimental results show that the suggested vehicle and rail have reasonable traction servo and robust electromagnetic suspensions without any contact. The resolution of point servo errors in the SLIM traction system is accomplished under 1mm. The maximum gap error is ${\pm}0.25mm$ with nominal air gap length of 4.0mm in the electromagnetic suspensions. This type of automated delivery vehicle is expected to have significant role in the clean delivery like FPD glass delivery.

Catenary System using MTL Structure with Distributed Parameter (MTL 모델을 이용한 전차선로 모델링)

  • Kim, Joo-Rak;Shim, Keon-Bo;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1077-1078
    • /
    • 2006
  • This paper presents circuit model of catenery in electrified railway system. Most of (a.c.)electrified railway system adopted as AT fed power supply system. This system is fed with twice voltage. It is that AT system can be fed through longer distance. Conventional circuit model of catenary is used T equivalent circuit with lumped parameter. This model may include some problem when traction power supply system is analyzed. In addition, the model with distributed parameter is good for analysis of harmonic and EMI.

  • PDF