• 제목/요약/키워드: Traction control system

검색결과 258건 처리시간 0.024초

엘리베이터 권상기 브레이크 시스템의 소음 및 진동 감소를 위한 솔레노이드 구동 제어기법 개발 (Development of a Solenoid Control Technique for the Suppression of Noise and Vibrations of the Brake System of Elevator Traction Machine)

  • 양동호;김기영;허석;곽문규;이재하
    • 한국소음진동공학회논문집
    • /
    • 제22권5호
    • /
    • pp.451-458
    • /
    • 2012
  • This paper is concerned with the suppression of noise and vibrations of the brake system of elevator traction machine by means of a solenoid control technique. The solenoid is used to hold the brake shoe, which is then released by turning the solenoid off. Since the brake shoe hits the brake disk, vibrations and noise occur. We developed the solenoid control technique based on the dynamic behavior of the solenoid. The theoretical model for the solenoid is modeled by using linear magnetic principles. The solenoid model was then combined with the vibration model to simulate the vibrations of brake system. The simulation results show that the additional pulse input to the solenoid can decrease the vibrations. The timing of the applied pulse is determined by observing the current. The experimental results show that both the vibrations and noise can be substantially decreased, which validates the approach developed in this paper.

경량전철용 구동시스템의 고속영역운전을 위한 추진제어기법 (Control Strategy for High Speed Operation in Light Rail Transit)

  • 이은규;최재호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권10호
    • /
    • pp.634-640
    • /
    • 2004
  • In this paper, the control strategy for high speed operation in light rail transit system is proposed. Recently, the vector control strategy is used to get high capacity control characteristic in low speed area. But Six step mode that is one pulse mode is used in high speed region to use DC link voltage to the maximum. Therefore, in high speed area, the vector control can not be used but scalar control method is used. To get a driving performance to be stabilized, the method of smooth mode change between the low speed and high speed area and PWM control is desired. So this paper proposes the control strategy using vector control include the one pulse mode. And also proposes overmodulation method that makes to change in one pulse mode softly. The performance of traction system will be verified by simulation results using MATLAB and experimental results.

차량용 탑승자 보호 기술 (Automotive Occupant Protection Technologies)

  • 이성수
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.223-226
    • /
    • 2018
  • 최근 차량 사고로부터 탑승자를 보호하기 위해서 다양한 안전 기술이 집중적으로 개발되고 있다. 본 논문에서는 잠김 방지 브레이크 시스템, 견인력 제어 시스템, 제동력 배분 시스템, 전자 주행 안정 장치, 자동 긴급 브레이크, 에어백, 좌석벨트 프리텐셔너, 능동형 헤드레스트 등 다양한 차량용 탑승자 보호 기술을 살펴보고, 각 기술의 동작원리 및 구현에 대해 설명한다.

Modified C-dump 컨버터를 이용한 자동차 냉각시스템 SRM 제어 (Control of SRM with Modified C-dump Converter in Cooling System of Automobiles)

  • 윤용호
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1297-1302
    • /
    • 2017
  • Recently, SRMs are used in automobiles for power assistant steering, accessory motion control and traction drives. Especially in the motion control and traction drives, safety and efficiency are of paramount importance. The paper describes the essential elements faced in designing and constructing driving circuits for a switched reluctance motor for automobiles. An important factor in the selection of a motor and a drive for industrial application is the cost. The switched reluctance motor(SRM) is a simple, low-cost, and robust motor suitable for variable-speed as well as servo-type applications. With relatively simple converter and control requirements, the SRM is gaining an increasing attention in the drive industry. This paper presents a modified C-dump converter for Switched Reluctance Motor (SRM) machine application in the cooling system of automobiles. The experiments are performed to verify the capability of applicate control method on 6/4 salient type SRM.

차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발 (Development of a Control Method of Traction Control System Using Vehicle Model)

  • 송정훈;김흥섭;이대희;손민혁
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.

도시철도차량용 VVVF인버터 본선시운전 시험 (A Routine Test VVF Inverter For Urban Rail Traction)

  • 한영재
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.572-575
    • /
    • 2000
  • In this paper we studies VVVF inverter for 1C4M propulsion system of urban rail traction. This inverter is consisted of inverter stack DB unit and control unit. To prove performance of inverter carry out main track test. From test for VVVR inverter verifies excellent performance

  • PDF

Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System

  • Hartani, Kada;Merah, Abdelkader;Draou, Azeddine
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1244-1255
    • /
    • 2015
  • This paper presents a new multi-machine robust control based on an electric differential system for electric vehicle (EV) applications which is composed of four in-wheel permanent magnet synchronous motors. It is based on a new master-slave direct torque control (DTC) algorithm, which is used for the control of bi-machine traction systems based on a speed model reference adaptive system observer. The use of an electric differential in the design of a new EV constitutes a technological breakthrough. A classical system with a multi-inverter and a multi-machine comprises a three-phase inverter for each machine to be controlled. Another approach consists of only one three-phase inverter for several permanent magnet synchronous machines. The control of multi-machine single-inverter systems is the subject of this study. Several methods have been proposed for the control of multi-machine single-inverter systems. In this study, a new master-slave based DTC strategy is developed to generate an electric differential system. The entire system is simulated by Matlab/Simulink. The simulation results show the effectiveness of the new multi-machine robust control based on an electric differential system for use in EV applications.

밭농업용 다목적 플랫폼의 견인동력 및 구동토크 예측을 위한 시뮬레이션 모델 개발 및 검증 (Development and Validation of Simulation Model for Traction Power and Driving Torque Prediction of Upland Multipurpose Platform)

  • 전현호;백승민;백승윤;홍이수;김택진;최용;김영근;이상희;김용주
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권1호
    • /
    • pp.16-26
    • /
    • 2023
  • Although the upland field area of Korea is high as 44.8%, the platform optimized for the upland field is insufficient. It is necessary to develop an optimized platform for the upland field because the upland field environment is an irregular environment with many slopes. In addition, due to the characteristic of agricultural operations, the traction power and torque of the platform have to be sufficient. Therefore, in this study, a simulation model that can predict the traction power and driving torque of a crawler-type platform for the upland field was developed and validated using the specifications of the crawler platform. The simulation model was developed using Amesim (19.1, Siemens, Germany). The development of the model was conducted using the specifications of the platform. A measurement system was developed to validate the simulation model. The traction power data of the simulation model was validated with the traction force and vehicle speed. The driving torque data of the simulation model was validated with the torque of the sprocket on the crawler system. As a result of the analysis, the error between measurement and simulation results occurred within 10%, and it was determined that the traction power and driving torque prediction of the crawler platform using this model was possible.

다중-전동기 구동형 전기자동차 추진제어 알고리즘 개발에 관한 연구 (Development of Traction Control Algorithm for Multi-Motor Driven Electric Vehicle)

  • 박정우;하회두;구대현;김종무;이재봉;김홍근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.495-498
    • /
    • 1997
  • In order to enhance the driveability of multi-wheel-drive electric vehicle fitted with a traction control system a traction control algorithm is proposed. Numerical computations show that the driveability could be considerably enhanced with respect to that of equivalent torque distribution vehicle.

  • PDF

RESEARCH OF AN ACTIVE FILTER BASED BALANCED POWER SUPPLY SYSTEM FOR RAIL WAY TRACTION

  • Zeng, Guohong;Hao, Rongtai
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.797-801
    • /
    • 1998
  • This paper presents a balanced 3/1 supply scheme for electric railway. By employing an active filter, the current of the three-phrase delivery system is balanced while the load is single phrase, which makes it possible for the traction system to behave like a pure-resistance load, with unity power factor and no harmonics. Simulation results are present to verify the scheme's topology and control strategies.

  • PDF