• Title/Summary/Keyword: Tracking-by-Detection

Search Result 803, Processing Time 0.024 seconds

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking (차선인식을 위한 무인자동차의 차량제어 및 모델링에 관한 연구)

  • 김상겸;임하영;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.213-221
    • /
    • 2003
  • This paper describes a method of lane tracking by means of a vision system which includes vehicle control and modeling. Lane tracking is considered one of the important technologies in an unmanned vehicle and mobile robot system. The current position and condition of the vehicle are calculated from an image processing method by a CCD camera. We deal with lane tracking as follows. First, vehicle control is included in the road model, and lateral and longitudinal controls. Second, the image processing method deals with the lane detection method, image processing algerian, and filtering method. Finally, this paper proposes a correct method for lane detection through a vehicle test by wireless data communication.

Towards Real-time Multi-object Tracking in CPU Environment (CPU 환경에서의 실시간 동작을 위한 딥러닝 기반 다중 객체 추적 시스템)

  • Kim, Kyung Hun;Heo, Jun Ho;Kang, Suk-Ju
    • Journal of Broadcast Engineering
    • /
    • v.25 no.2
    • /
    • pp.192-199
    • /
    • 2020
  • Recently, the utilization of the object tracking algorithm based on the deep learning model is increasing. A system for tracking multiple objects in an image is typically composed of a chain form of an object detection algorithm and an object tracking algorithm. However, chain-type systems composed of several modules require a high performance computing environment and have limitations in their application to actual applications. In this paper, we propose a method that enables real-time operation in low-performance computing environment by adjusting the computational process of object detection module in the object detection-tracking chain type system.

3D Walking Human Detection and Tracking based on the IMPRESARIO Framework

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.163-169
    • /
    • 2008
  • In this paper, we propose a real-time people tracking system with multiple CCD cameras for security inside the building. The camera is mounted from the ceiling of the laboratory so that the image data of the passing people are fully overlapped. The implemented system recognizes people movement along various directions. To track people even when their images are partially overlapped, the proposed system estimates and tracks a bounding box enclosing each person in the tracking region. The approximated convex hull of each individual in the tracking area is obtained to provide more accurate tracking information. To achieve this goal, we propose a method for 3D walking human tracking based on the IMPRESARIO framework incorporating cascaded classifiers into hypothesis evaluation. The efficiency of adaptive selection of cascaded classifiers have been also presented. We have shown the improvement of reliability for likelihood calculation by using cascaded classifiers. Experimental results show that the proposed method can smoothly and effectively detect and track walking humans through environments such as dense forests.

A Study on the Detecting Method of Intercept Violation Vehicles Using an Image Detection Techniques (영상검지기법을 활용한 끼어들기 위반차량 검지 방법에 관한 연구)

  • Kim, Wan-Ki;Ryu, Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.164-170
    • /
    • 2008
  • This research was verified detection way of intercept vehicles and performance evaluation after system installation using image detector as detection way of ground installation. By image recognition algorithm was on the trace of moving orbit of violation vehicles for detection way of intercept vehicles. When moving orbit is located special site, utilized geometric image calibration and DC-notch filter. These are cognitive system of license plate by making signal. Then, Bright Evidence Detection and Dark Evidence Detection were applied to after mixing. It is applied to way of Backward tracking for detection way of intercept vehicles. After the field evaluation of developed system, it should be analyzed the more high than recognition rate of minimum standards 80%. It should rise in the estimation of the site applicability is highly from now.

New Seed Detection by Shape Analysis for Construction of Vascular Structures

  • Shim, Hack-Joon;Lee, Hyun-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.427-433
    • /
    • 2010
  • Although tracking methods are efficient and popular for vessel segmentation, they require a seed to initiate an instance of tracking. In this paper, a new method to detect new seeds for tracking of arterial segments from CT angiography (CTA) and to construct a vascular structure is proposed. The proposed algorithm is based on shape analysis of connected components in a volume of interest around a vessel segment which was already extracted by tracking. The eigenvalues of the covariance matrix are used as the shape features for detection. The experimental results on actual clinical data showed that the results totally revealed the arterial tree not hindered by bone or veins. In visual comparison to a method which combines registration and subtraction of both pre-contrast and post-contrast CT volumes, the proposed method produced comparable results to the reference method and were confirmed of its feasibility for clinical use of reducing the cost and burden of patients.

Preceding Vehicle Detection and Tracking with Motion Estimation by Radar-vision Sensor Fusion (레이더와 비전센서 융합기반의 움직임추정을 이용한 전방차량 검출 및 추적)

  • Jang, Jaehwan;Kim, Gyeonghwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.265-274
    • /
    • 2012
  • In this paper, we propose a method for preceding vehicle detection and tracking with motion estimation by radar-vision sensor fusion. The motion estimation proposed results in not only correction of inaccurate lateral position error observed on a radar target, but also adaptive detection and tracking of a preceding vehicle by compensating the changes in the geometric relation between the ego-vehicle and the ground due to the driving. Furthermore, the feature-based motion estimation employed to lessen computational burden reduces the number of deployment of the vehicle validation procedure. Experimental results prove that the correction by the proposed motion estimation improves the performance of the vehicle detection and makes the tracking accurate with high temporal consistency under various road conditions.

A vehicle detection and tracking algorithm for supervision of illegal parking (불법 주정차 차량 단속을 위한 차량 검지 및 추적 기법)

  • Kim, Seung-Kyun;Kim, Hyo-Kak;Zhang, Dongni;Park, Sang-Hee;Ko, Sung-Jea
    • Journal of IKEEE
    • /
    • v.13 no.2
    • /
    • pp.232-240
    • /
    • 2009
  • This paper presents a robust vehicle detection and tracking algorithm for supervision of illegal parking. The proposed algorithm is composed of four parts. First, a vehicle detection algorithm is proposed using the improved codebook object detection algorithm to segment moving vehicles from the input sequence. Second, a preprocessing technique using the geometric characteristics of vehicles is employed to exclude non-vehicle objects. Then, the detected vehicles are tracked by an object tracker which incorporates histogram tracking method with Kalman filter. To make the tracking results more accurate, histogram tracking results are used as measurement data for Kalman filter. Finally, Real Stop Counter (RSC) is introduced for trustworthy and accurate performance of the stopped vehicle detection. Experimental results show that the proposed algorithm can track multiple vehicles simultaneously and detect stopped vehicles successfully in the complicated street environment.

  • PDF

Real-time Detection and Tracking of Moving Objects Based on DSP (DSP 기반의 실시간 이동물체 검출 및 추적)

  • Lee, Uk-Jae;Kim, Yang-Su;Lee, Sang-Rak;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.263-269
    • /
    • 2010
  • This paper describes real-time detection and tracking of moving objects for unmanned visual surveillance. Using images obtained from the fixed camera it detects moving objects within the image and tracks them with displaying rectangle boxes enclosing the objects. Tracking method is implemented on an embedded system which consists of TI DSK645.5 kit and the FPGA board connected on the DSP kit. The DSP kit processes image processing algorithms for detection and tracking of moving objects. The FPGA board designed for image acquisition and display reads the image line-by-line and sends the image data to DSP processor, and also sends the processed data to VGA monitor by DMA data transfer. Experimental results show that the tracking of moving objects is working satisfactorily. The tracking speed is 30 frames/sec with 320x240 image resolution.

Performance Analysis of Omni-Directional Automatic Target Detection and Tracking for a Towed Array Passive Sonar System (예인형 수동소나에 적합한 전방위 표적 자동탐지 및 추적기법 성능 분석)

  • Seo, Ik-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.33-40
    • /
    • 2006
  • In towed array passive sonar system, sonar operators cannot detect and track the all targets simultaneously in the omni-directional area by just Operator Initiated Tracking(OIT). In this paper, omni-directional automatic target detection and tracking algorithm is described and optimize the parameters through ocean data to overcome the drawbacks of OITs. The algorithm is verified through sea trials with submarines.

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.