• Title/Summary/Keyword: Tracking network

Search Result 1,000, Processing Time 0.029 seconds

A Study on the Optimal Data Association in Multi-Target Tracking by Hopfield Neural Network (홉필드 신경망을 이용한 다중 표적 추적이 데이터 결합 최적화에 대한 연구)

  • Lee, Yang-Weon;Jeong, Hong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.186-197
    • /
    • 1996
  • A multiple target tracking (MTT) problem is to track a number of targets in clusttered environment, where measurements may contain uncertainties of measurement origin due to clutter, missed detection, or other targets, as well as measurement noise errors. Hence, an MTT filter should be introduced to resolve this problem. In this paper, a neural network is rpoposed as an MTT filter.

  • PDF

Linear/nonlinear system identification and adaptive tracking control using neural networks (신경회로망을 이용한 선형/비선형 시스템의 식별과 적응 트래킹 제어)

  • 조규상;임제택
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.1-9
    • /
    • 1996
  • In this paper, a parameter identification method for a discrete-time linear system using multi-layer neural network is proposed. The parameters are identified with the combination of weights and the output of neuraons of a neural network, which can be used for a linear and a nonlinear controller. An adaptive output tracking architecture is designed for the linear controller. And, the nonlinear controller. A sliding mode control law is applied to the stabilizing the nonlinear controller such that output errors can be reduced. The effectiveness of the proposed control scheme is illustrated through simulations.

  • PDF

Design of a Robust Controller for the Butterfly Valve with Considering the Friction (마찰을 고려한 버터플라이 밸브의 강인 제어기 설계)

  • Choi, Jeongju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.824-830
    • /
    • 2013
  • We propose a tracking control system for butterfly valves. A sliding mode controller with a fuzzy-neural network algorithm was applied to the design of the tracking control system. The control scheme used the real-time update law for the unmodeled system dynamics using a fuzzy-neural network algorithm. The performance of the proposed control system was assessed through a range of experiments.

MAXIMUM POWER POINT TRACKING CONTROL OF PHOTOVOLTAIC ARRAY USING FUZZY NEURAL NETWORK

  • Tomonobu Senjyu;Yasuyuki Arashiro;Katsumi Uezato;Hee, Han-Kyung
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.987-992
    • /
    • 1998
  • Solar cell has an optimum operating point to extract maximum power. To control operating point of the solar cell, a fuzzy controller has already been proposed by our research group. However, several parameters are determined by trial and error. To overcome this problem, this paper adopts Fuzzy Neural Network (FNN) for maximum power point tracking control for photovoltaic array. The FNN can be trained to perfect fuzzy rules and to find an optimum membership functions on-line.

  • PDF

Development of the Effective Motion Tracking Algorithm Under Sensor Network (센서 네트워크하에서의 효율적 물체 추적 알고리즘 개발)

  • Kim, Si-Hwan;Kim, Seong-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.318-322
    • /
    • 2006
  • 본 연구에서는 한정된 전원으로 구동되는 센서 네트워크 환경 하에서 물체의 이동을 검출하고 예측을 통해 효과적인 추적을 가능케 함으로써 missing-rate를 최소로 하는 새로운 형태의 알고리즘을 제안하고 시뮬레이션을 통해 제안된 방법의 유용성을 입증하고자 한다. 제안된 기법에서는 물체의 이동과 관련된 센서 노드들로부터의 정보 및 이를 기반으로 센서 노드에 장착된 A/D변환기의 임계값을 적응적으로 변화시킴으로써 물체의 missing-rate를 최소화 시키고자 하였다.

  • PDF

Multi-pedestrian tracking using deep learning technique and tracklet assignment

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.808-810
    • /
    • 2018
  • Pedestrian tracking is a particular problem of object tracking, and an important component in various vision-based applications, such as autonomous cars or surveillance systems. After several years of development, pedestrian tracking in videos is still a challenging problem because of various visual properties of objects and surrounding environment. In this research, we propose a tracking-by-detection system for pedestrian tracking, which incorporates Convolutional Neural Network (CNN) and color information. Pedestrians in video frames are localized by a CNN, then detected pedestrians are assigned to their corresponding tracklets based on similarities in color distributions. The experimental results show that our system was able to overcome various difficulties to produce highly accurate tracking results.

An Improved Vehicle Tracking Scheme Combining Range-based and Range-free Localization in Intersection Environment (교차로 환경에서 Range-based와 Range-free 위치측정기법을 혼합한 개선된 차량위치추적기법)

  • Park, Jae-Bok;Koh, Kwang-Shin;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.106-116
    • /
    • 2011
  • USN(Ubiquitous Sensor Network) environment permits us to access whatever information we want, whenever we want. The technologies to provide a basement to these environments premise an accurate location establishment. Especially, ITS(Intelligent Transportation Systems) is easily constructed by applying USN technology. Localization can be categorized as either Range-based or Range-free. Range-based is known to be not suitable for the localization based on sensor network, because of the irregularity of radio propagation and the additional device requirement. The other side, Range-free is much appropriated for the resource constrained sensor network because it can actively locate by means of the communication radio. But, generally the location accuracy of Range-free is low. Especially, it is very low in a low-density environment. So, these two methods have both merits and demerits. Therefore, it requires a new method to be able to improve tracking accuracy by combining the two methods. This paper proposes the tracking scheme based on range-hybrid, which can markedly enhance tracking accuracy by effectively using the information of surrounding nodes and the RSSI(Received Signal Strength Indication) that does not require additional hardware. Additionally, we present a method, which can improve the accuracy of vehicle tracking by adopting the prediction mechanism. Simulation results show that our method outperforms other methods in the transportation simulation environment.

ROI-based Encoding using Face Detection and Tracking for mobile video telephony (얼굴 인식과 추적을 이용한 ROI 기반 영상 통화 코덱 설계 및 구현)

  • Lee, You-Sun;Kim, Chang-Hee;Na, Tae-Young;Lim, Jeong-Yeon;Joo, Young-Ho;Kim, Ki-Mun;Byun, Jae-Woan;Kim, Mun-Churl
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.77-78
    • /
    • 2008
  • With advent of 3G mobile communication services, video telephony becomes one of the major services. However, due to a narrow channel bandwidth, the current video telephony services have not yet reached a satisfied level. In this paper, we propose an ROI (Region-Of-Interest) based improvement of visual quality for video telephony services with the H.264|MPEG-4 Part 10 (AVC: Advanced Video Coding) codec. To this end, we propose a face detection and tracking method to define ROI for the AVC codec based video telephony. Experiment results show that our proposed ROI based method allowed for improved visual quality in both objective and subjective perspectives.

  • PDF

Position Control of Linear Synchronous Motor by Dual Learning (이중 학습에 의한 선형동기모터의 위치제어)

  • Park, Jung-Il;Suh, Sung-Ho;Ulugbek, Umirov
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • This paper proposes PID and RIC (Robust Internal-loop Compensator) based motion controller using dual learning algorithm for position control of linear synchronous motor respectively. Its gains are auto-tuned by using two learning algorithms, reinforcement learning and neural network. The feedback controller gains are tuned by reinforcement learning, and then the feedforward controller gains are tuned by neural network. Experiments prove the validity of dual learning algorithm. The RIC controller has better performance than does the PID-feedforward controller in reducing tracking error and disturbance rejection. Neural network shows its ability to decrease tracking error and to reject disturbance in the stop range of the target position and home.

A Research on the Adaptive Control by the Modification of Control Structure and Neural Network Compensation (제어구조 변경과 신경망 보정에 의한 적응제어에 관한 연구)

  • Kim, Yun-Sang;Lee, Jong-Soo;Choi, Kyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we propose a new control algorithm based on the neural network(NN) feedback compensation with a desired trajectory modification. The proposed algorithm decreases trajectory errors by a feed-forward desired torque combined with a neural network feedback torque component. And, to robustly control the tracking error, we modified the desired trajectory by variable structure concept smoothed by a fuzzy logic. For the numerical simulation, a 2-link robot manipulator model was assumed. To simulate the disturbance due to the modelling uncertainty. As a result of this simulation, the proposed method shows better trajectory tracking performance compared with the CTM and decreases the chattering in control inputs.

  • PDF