• Title/Summary/Keyword: Track type

Search Result 541, Processing Time 0.025 seconds

Dynamic Behavior of Direct Fixation Track on Yeongjong Grand Bridge (영종대교 강직결 궤도구조의 동적거동에 관한 연구)

  • Choi, Jung-Youl;Lee, Kyu-Yong;Chung, Jee-Seung;Ahn, Dae-Hee;Kim, Soo-Hyung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.443-448
    • /
    • 2020
  • In this study, field measurements were performed to analyze the effects of train types (AREX, AREX Express, KTX, KTX-Sancheon) and train speeds on the dynamic behavior of the direct fixation track structure on Yeongjong grand bridge by bridge type (truss bridge, suspension bridge). Based on field measurement results, the track impact factor and train running stability (coefficient of derailment, Rate of wheel load reduction, lateral displacement of rail head) are compared with domestic and foreign standards and regulations to influence the dynamic behavior of direct fixation track. As a result, the differences in the dynamic behavior of the direct fixation tracks by the type of bridges of Yeongjong bridge are not significant, but it was analyzed that these were more directly affected by the magnitude of the train load. Therefore, it is necessary to establish the reinforcement plan of the direct fixation track structure on Yeongjong grand bridge in consideration of the increase of the track impact factor and dynamic track force.

Study on compaction characteristics of mixed fill materials(rock and soil) in railway roadbed (철도노반 혼합(흙과 암)성토의 다짐특성에 관한 연구)

  • Kim, Dae-Sang;Park, Seong-Yong;Song, Jong-Woo;Kim, Soo-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Concrete track will be constructed in Gyungbu High Speed Railway II(GHSR II) stage construction site from Daegu to Busan. Concrete track is supported by substructure consisting of the original ground and embankment and does not allow the settlement of track because of its structural type. The embankment is composed of rock and soil mixture and settlement is feasible. So management of settlement of embankment is key point in successful construction of the concrete track. Compaction management of mixed fill materials is important in minimizing the settlement of embankment. In this study, in order to assess the compaction characteristics of mixed fill materials, large laboratory compaction tests were conducted. Mixed fill materials were obtained from two construction sites in GHSR II construction site. Modeled mixed fill materials having different rock type, fine content, maximum particle diameter, and moisture contents were prepared. From the test results, compaction characteristics of mixed fill materials were analysed.

  • PDF

Test Construction of the Paved Track at Subway Main Line (도시철도 본선 토공구간에서의 포장궤도 시험부설)

  • Lee, Il-Wha;Kang, Yun-Suk;Kong, Sun-Yong;Kim, Sang-Jin;Lee, Shun-Gu;Jung, Yun-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1689-1694
    • /
    • 2008
  • Recently, the development of the paved track is required as a low-maintenance of conventional line. The main reason is that the line capacity and bearing of track are increased progressively. The important factors of paved track are stability and applicability. To be based on this subject, cement mortar pouring type paved track is developed. The paved track is a kind of concrete track using the prepacked concrete technique. The most important thing to design the paved track is to optimize the track structure and materials considering various conditions. Until now, the paved track is verified a various material and structure test. In this paper, it is introduce to the test construction at the urban subway main line. The test construction is completed at Dec. 2007. A major object and substance is a guarantee of construction progress on main line, track performance, construction technique for curved section, transition zone and winter season, recycling the used ballast and application of specific sleeper for sharp curved section.

  • PDF

Study on vibration energy characteristics of vehicle-track-viaduct coupling system considering partial contact loss beneath track slab

  • Liu, Linya;Zuo, Zhiyuan;Zhou, Qinyue;Qin, Jialiang;Liu, Quanmin
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.497-506
    • /
    • 2020
  • CA mortar layer disengagement will give rise to the overall structural changes of the track and variation in the vibration form of the ballastless track. By establishing a vehicle-track-viaduct coupling analysis and calculation model, it is possible to analyze the CRTS-I type track structure vibration response while the track slab is disengaging with the power flow evaluation method, to compare the two disengaging types, namely partial contact loss at one edge beneath track slab and partial contact loss at midpoint beneath track slab. It can also study how the length of disengaging influences the track structures vibration power. It is showed that when the partial contact loss beneath track slab, and the relative vibration energy level between the rail and the track slab increases significantly within [10, 200]Hz with the same disengaging length, the partial contact loss at one edge beneath track slab has more prominent influence on the vibration power than the partial contact loss at midpoint beneath track slab. With the increase of disengaging length, the relative vibration energy level of the track slab grows sharply, but it will change significantly when it reaches 1.56 m. Little effect will be caused by the relative vibration energy level of the viaduct. The partial contact loss beneath the track slab will cause more power distribution and transmission between the trail and track slab, and will then affect the service life of the rail and track slab.

Dynamic Analysis and Modeling of Guide Track for a Braiding Machine of Maypole (Maypole Type 편조기의 Guide Track의 동적 모델링 및 해석)

  • 정원지;김재량;최선준;김임선
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.70-76
    • /
    • 2003
  • Braiding machines of maypole type have complex guide tracks. It is not easy to speed up drivers while carriers are moving at high speed. This paper presents a new design approach using dynamic analysis and modeling for moving carriers on the guide tracks. The proposed approach will be shown to be effective by using simulation tool, WORKING MODEL $2D^{\circledR}$, for high speed drivers on new models of braiding machines of maypole type.

Design and Dynamic Analysis of Guide Track for Braiding Machine of Maypole (Maypole Type 편조기 Guide Track의 동적해석 및 설계)

  • 김재량;정원지;최선준;김임선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.875-878
    • /
    • 2002
  • Braiding machines of maypole type have complex guide tracks. It is not easy to speed up drivers while carriers are moving with being at high speed. This paper presents a new design approach using dynamic analysis for moving carriers on the guide tracks. The proposed approach will be shown to be effective by using the simulation tool, WORKING MODEL 2D(equation omitted), for the high speed drivers on new models of braiding machines of maypole type.

  • PDF

Driving and Swing Analysis of a Crawler Type Construction Equipment Using Flexible Multibody Dynamics (탄성 다물체 해석기법을 이용한 크롤러형 건설장비의 주행 및 선회 동특성 해석)

  • 김형근;서민석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.101-109
    • /
    • 1997
  • A tool for the dynamic simulation and design technique of the excavator plays an important role in the prediction of dynamic behavior of the excavator in the initial design stage. In this paper, a flexible multibody dynamic analysis model including track of the crawler type excavator is developed using DADS and ANSYS. Through the driving simulation of the excavator travelling over rough road track, frequency characteristics of the upper frame and cabin are obtained, and the reaction forces acting on the track rollers are also presented for the fatigue life estimation. The effect of boom vibration modes on the joint reaction forces and accelerations is presented from the swing simulation.

  • PDF

Comparison of Chord method with Surveying in Track irregularity Measurement (측량과 현방식 궤도틀림 측정 비교)

  • Lee, Jee-Ha;Lee, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1647-1652
    • /
    • 2008
  • Track geometry consists of tangent and curved lines, which caused undesirable changes in initial track geometry by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To be able to objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, this method determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from specific property of measuring tool. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolly. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is Trackmaster, measures versine with 2m of chord length.

  • PDF

Wheelset Steering Control for Improvement a Running Safety on Curved Track (곡선부 주행안전성 향상을 위한 윤축 조향 제어)

  • Hur, Hyun Moo;Ahn, Da Hoon;Kim, Nam Po;Sim, Kyung Seok;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

Applicability Estimation of Ballast Non-exchange-type Quick-hardening Track Using a Layer Separation Pouring Method (층 분리주입을 이용한 도상자갈 무교환방식 급속경화궤도의 적용성 평가)

  • Lee, Il Wha;Jung, Young Ho;Lee, Min Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.543-551
    • /
    • 2015
  • Quick-hardening track (QHT) is a construction method which is used to change from old ballast track to concrete track. Sufficient time for construction is important, as the construction should be done during operational breaks at night. Most of the time is spent on exchanging the ballast layer. If it is possible to apply the ballast non-exchange type of quick-hardening track, it would be more effective to reduce the construction time and costs. In this paper, pouring materials with high permeability are suggested and a construction method involving a layer separation pouring process considering the void condition is introduced in order to develop ballast non-exchange type of QHT. The separate pouring method can secure the required strength because optimized materials are poured into the upper layer and the lower layer for each void ratio condition. To ensure this process, a rheology analysis was conducted on the design of the pouring materials according to aggregate size, the aggregate distribution, the void ratio, the void size, the tortuosity and the permeability. A polymer series was used as the pouring material of the lower layer to secure the void filling capacity and for adhesion to the fine-grained layer. In addition, magnesium-phosphate ceramic (MPC) was used as the pouring material of the upper layer to secure the void-filling capacity and for adhesion of the coarse-grained layer. As a result of a mechanics test of the materials, satisfactory performance corresponding to existing quick-hardening track was noted.