• Title/Summary/Keyword: Track Following

Search Result 226, Processing Time 0.02 seconds

A New Track-following Control Method Using Disturbance Observer with the Freedom of Gain and Frequency Adaptation (이득의 자유도와 주파수 적응성을 가진 외란 관측기를 사용한 새로운 트랙 추종 제어 기법)

  • Jung, Woo-Min;Kim, Eun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.360-362
    • /
    • 2006
  • This paper proposes a new track-following control method using disturbance observer with the freedom of gain and frequency adaptation in optical disk drive system. Recent ODDs use smaller track pits, higher rotation speed and broader rotational speed variations to increase the data capacity and data transfer rate. This cause the degradation of track-following performance by increasing the disturbance of the rotary system. In this paper, we discussed on a DOB structure that efficiently attenuate the disturbance without effecting the overall feedback loop characteristics on CLV type ODD which uses a higher and broader range of rotational speed. DOB structure uses two band pass filter. We analyzed the track-following performance sensitivity on rotational frequency variance and gain changes. This analysis is done on a computer simulation environment and actual ODD product.

  • PDF

Enhanced Track Jump Stability in Optical Disc Drives (광디스크 드라이브에서의 트랙 점프 안정도 향상)

  • Ryoo, Jung-Rae;Doh, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.683-687
    • /
    • 2009
  • Track jump control is a random access strategy for short distance movement. The most common track jump scheme is a bang-bang control of a kick and brake manner. In a conventional track jump scheme, a track-following compensator is turned off during kick and brake periods, and restarted at a target track for track pull-in. The inevitable controller switching with non-zero initial condition results in undesirable transient response, and excessive overshoot in the transient response causes track pull-in failure. In this paper, a new track jump scheme is proposed for enhancing track jump stability. Instead of control switching, internal states of a track-following controller are artificially manipulated for kick and brake actions in a digital control environment. Experimental results are provided in comparison with conventional track jumps.

Track-Following Control of a Hard Disk Drive Actuator Using Nonlinear Robust Deterministic Control (비선형 견실 확정제어를 이용한 하드디스크 드라이브의 트랙추종제)

  • Wie, Byung-Yeol;Kang, Chul-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.10
    • /
    • pp.881-887
    • /
    • 2000
  • There are significant nonlinearities and uncertainties in hard disk drive actuators. In particular, pivot bearing nonlinearity and repeatable run-out make track-following control difficult as track density increases. In this paper, we design a robust track-following controller using a robust deterministic control scheme in which the pivot bearing nonlinearity and repeatable run-out are considered as uncertainties. Simulation study is conducted to evaluate the control performance of the proposed control scheme.

  • PDF

Design of a Gain Scheduling Controller to Improve Pull-in Performance in Optical Disc Drive (광디스크 드라이버의 풀인(pull-in) 성능향상을 위한 이득 스케줄링 제어기의 설계)

  • Kim, Eun-Hee;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.462-466
    • /
    • 2008
  • This paper proposes a stable gain scheduling method of linear time invariant controllers for tracking servo system. In order to read and write the data on the optical disc, the pick-up head should be moved to the exact track quickly and follow the track immediately. Two different controllers are used for each moving and track-following. In pull-in period, a transition period from moving to track-following, the head might slip and miss the target track. This brings on another searching process and increases the total time. One way to avoid slipping is to extend the bandwidth of the track-following controller. But, extending the bandwidth could degrade the following performance. More prevalent way is to use one more controller in this pull-in period and switch to the following controller. In general, however, switching or scheduling of stable controllers cannot guarantee the stability. This paper suggests an scheduling method guaranteeing the overall stability not only in a generalized form but also in special form for SISO system. The sufficient condition is derived from the fact that Q factor of a stable controller should be stay in $RH_{\infty}$ space. In the experiment, the proposed method shows better performance than the switching method such as shorter time and lower current consumption.

Design and Implementation of Periodic Disturbance Compensators for Track Following Servo Systems (트랙 추종 서보 시스템에 대한 주기적 외란 보상기의 이득 설정과 구현)

  • Jeong, Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.139-145
    • /
    • 2014
  • Periodic disturbance compensators are widely used in track following servo systems. They are commonly designed and implemented by adaptive feedforward compensators or internal model based compensators. In track following servo systems, the gains of the compensators should be determined considering the change of the sensitivity transfer function and the implementation methods should be selected considering the system environment. This paper proposes a guide for determining gains of the periodic disturbance compensators. Various simulation and experimental results are presented to see the effect of gains. In addition, this paper introduces the various types of implementation methods and compares their merits and demerits.

Design of a Robust Track-following Controller with Multiple Constraints (다중 제한 조건을 고려한 강인 트랙 추종 제어기의 설계)

  • Jin Kyoun Bog;Kim Jin-Soo;Lee Moon-Noh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.827-836
    • /
    • 2004
  • In this paper, we design a robust multi-objective track-following controller that satisfies transient response specifications and diminishes the influence of sinusoidal disturbance. To this end, a robust control problem with the multiple constraints is considered. We show that a sufficient condition satisfying the robust control problem can be expressed by linear matrix inequalities. Finally, the robust track-following controller can be designed by solving an LMI optimization problem. The effectiveness of the proposed controller design method is verified though experiments.

A Method for Reducing the Effect of Disk Radial Runout for a High-Speed Optical Disk Drive (고속 광 디스크 드라이브를 위한 디스크의 편심 보상 방법)

  • Ryoo Jung Rae;Moon Jung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.101-105
    • /
    • 2006
  • Disk radial runout creates a periodic relative motion between the laser beam spot and tracks formed on an optical disk. While only focus control is activated, the periodic relative motion yields sinusoid-like waves in the tracking error signal, where one cycle of the sinusoid-like waves corresponds to one track. The frequency of the sinusoid-like waves varies depending on the disk rotational speed and the amount of the disk radial runout. If the frequency of the tracking error signal in the off-track state is too high due to large radial runout of the disk, it is not a simple matter to begin track-following control stably. It might take a long time to reach a steady state or tracking control might fail to reach a stable steady state in the worst case. This article proposes a simple method for reducing the relative motion caused by the disk radial runout in the off-track state. The relative motion in the off-track state is effectively reduced by a drive input obtained through measurements of the tracking error signal and simple calculations based on the measurements, which helps reduce the transient response time of the track-following control. The validity of the proposed method is verified through an experiment using an optical disk drive.

Comparison of Two Intramuscular Injection Techniques on the Severity of Discomfort and leasions at the Injection Site (근육주사법에 따른 주사부위의 불편감과 조직손상의 차이에 관한 연구)

  • 김경선
    • Journal of Korean Academy of Nursing
    • /
    • v.18 no.3
    • /
    • pp.257-268
    • /
    • 1988
  • The purpose of this study was to compare the effect of the Z-track intramuscular injection technique with the effect of the stand and intramuscular injection technique on the severity of discomfort and leasions at the injection site. The subjects of the study were 20 patients with only early tuber culosis excluding another abnormalities (a akin rash, allergy to topical use of alcohol, jaundice, edema, neurosensory abnormality, coagulation defects, obesity and thin). Data collection was done from Feb. 1 to March 15, 1988 by means of Korean Pain Measurement Tool, Visual Analogue Scale, and Objective measures of injection site lesions. The results of this study were as follows ; 1) Hypothesis 1 ; “The severity of subject discomfort is less following administration of the Z-track intramuscular injection technique than following administra tion injection technique.” was not sopported 2) Hypothesis 2 ; “The degress of severity subject discomfort is less following administration of the Z-track intramuscular injection technique than following administra tion of the standard intramuscular injection technique.” was not supported. 3) Hypothesis 3 ; “The severity of injection site lesions is less following administra tion of the Z-track intramuscular injection technique than following administration of the standard intramuscular injection techniques.” was not supported. 4) The terms that were selected included factor II (mild-moderate pain) of Ratio Scale Measuring Pain using Korean Pain Terms. In conclusion ; it was found that there was not a difference from the severity of subject discomfort between two groups, but the degress of severity of subject discomfort about following administration of the Z-t-rack intramuscular injection was tended to be declined. Therefore further studies suggest that the Z-track intramuscular injection technique can decrease the severity of discomfort in persons receiving frequently intramuscular injections. First of all, it is necessery to be developed an effective tool of discomfort measurement for the intramuscular injection in Korean.

  • PDF

Dual-Stage Servo System using Electrostatic Microactuator for Super-High Density HDD (정전형 마이크로 액추에이터를 이용한 초고밀도 HDD용 Dual-Stage 서보 시스템)

  • Kim, Seung-Han;Seong, U-Gyeong;Lee, Hyo-Jeong;Lee, Jong-Won;Choe, Jeong-Hun;An, Yeong-Jae;Jeon, Guk-Jin;Kim, Bong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.153-160
    • /
    • 1999
  • Dual-stage servo system for super-high density HDD has the chances of being composed of the coarse actuator(VCM) for track-seeking control and the fine actuator(microactuator) for-following control in near future. This paper presents the concept design of dual-stage servo system and the track-following control using an electrostatic microactuator for super-high density HDD. The electrostatic microactuator is designed and fabricated by MEMS(micro-electro-mechanical system) process. Both the nonlinear plant(voltage/displacement-to-electrostatic force) and the linear plant(electrostatic force-to-displacement) of the microactuator are established. Inverse function of the nonlinear plant is employed for a feedforward nonlinear compensator design. And feedforward control effect of this compensator is shown by time-domain experiments. A track-following feedback controller is designed using the feedback nonlinear compensator which is derived from the feedforward nonlinear compensator. The track-following control experiment is done to show the control efficiency of the proposed control system. And, excellent track-following control performance(2.21kHz servo-bandwidth, 7.51dB gain margin, $50.98^{\circ}$phase margin) is achieved by the proposed control system.

  • PDF

Repetitive Control for the Track-Following Servo System of an Optical Disk Drive (광 디스크 드라이브의 트랙 추종 서보 시스템을 위한 반복 제어)

  • 문정호;이문노;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Disturbances acting on the track-following servo system of an optical disk drive inherently contain significant periodic components that cause tracking errors of a periodic nature. Such disturbances can be effectively rejected by employing a repetitive controller, which must be implemented carefully in consideration of system stability. Plant uncertainty makes it difficult to design a repetitive controller that will improve tracking performance yet preserve system stability. In this paper, we examine the problem of designing a repetitive controller for an optical disk drive track-following servo system with uncertain plant coefficients. We propose a graphical design technique based on the frequency domain analysis of linear interval systems. This design method results in a repetitive controller that will maintain system stability against all admissible plant uncertainties. We show simulation and experimental results to verify the validity of the proposed design method.

  • PDF