• Title/Summary/Keyword: Tracer gas method

Search Result 67, Processing Time 0.026 seconds

Simple Image-Separation Method for Measuring Two-Phase Flow of Freely Rising Single Bubble (상승하는 단일 버블 이상유동의 PIV 계측을 위한 영상분리기법)

  • Park Sang-min;Jin Song-wan;Kim Won-tae;Sung Jae-yong;Yoo Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.7-10
    • /
    • 2002
  • A novel two-phase PIV algorithm using a single camera has been proposed, which introduces a method of image-separation into respective phase images, and is applied to freely rising single bubble. Gas bubble, tracer particle and background each have different gray intensity ranges on the same image frame when reflection and dispersion in the phase interface are intrinsically eliminated by optical filters and fluorescent material. Further, the signals of the two phases do not interfere with each other. Gas phase velocities are obtained from the separated bubble image by applying the two-frame PTV. On the other hand, liquid phase velocities are obtained from the tracer particle image by applying the cross-correlation algorithm. Moreover, in order to increase the SNR (signal-to-noise ratio) of the cross-correlation of tracer particle image, image enhancement is employed.

  • PDF

An Experimental Analysis of Ventilation Effectiveness using Tracer Gas (환기방식별 실내 환기효율 분석에 관한 실험적 연구)

  • Kang, Tae-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.260-266
    • /
    • 2006
  • A tracer gas technique based on ASTM Standard E741-83 was used to measure ventilation performances in a model chamber ($0.84m{\times}0.68m{\times}0.7m$) with an exhaust fan and a supply fan. Experiments were performed for the ventilation effectiveness on three types of mechanical ventilation systems. For all cases. higher ventilation effectiveness was found in the type to ventilation system due to shorter residual time of air compared to type 1 and type 3.

A Study on Ventilation Characteristics of Industrial Windows (공장창호의 환기특성에 관한 연구)

  • Piao, Cheng-Xu;Kim, Tae-Hyeung;Ha, Hyun-Chul;Xu, Rong-Bin
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.581-587
    • /
    • 2011
  • Industrial natural ventilation systems consist of gravity ventilator, the high/low windows and doors. Especially, the high windows play an important role in the industrial natural ventilation systems. Generally speaking, industrial high windows are divided into 3 types; louver type, $45^{\circ}$ open type and $90^{\circ}$ open type. This study was numerically and experimentally conducted. Three types of windows were tested to know the ventilation characteristics and estimate the ventilation efficiencies. Numerically, computational fluid dynamics software (AIR PAK Ver. 2.0) was used to observe the flow characteristics inside the industrial building and the concentration contours generated by the tracer gas method. Experimentally, the flow visualization technique and the tracer gas method were applied with the model building to characterize the flow pattern inside the model building and to estimate the ventilation efficiencies with the different windows. It was found that $90^{\circ}$ open type window was most effective for the discharge of pollutants from the industrial building. On the other hand, the louver type window was found to be less effective than any other windows.

A Study on the Ventilation Efficiency of Apartment Housing Bathroom Based on the Flexible Installation Method of Exhaust Fan. (공동주택 욕실 배기팬의 플랙시블 덕트 시공상태에 따른 환기효율에 관한 연구)

  • Lee Kwang Myung;Ham Jin Sik
    • Journal of the Korean housing association
    • /
    • v.16 no.1
    • /
    • pp.73-79
    • /
    • 2005
  • The ventilation efficiency of apartment housing bathroom has been measured by the flexible's diameter, length, and installation format to the exhaust In. The gas density attenuation method of Tracer Gas Method has been specifically utilized for this measurement. Full size mock-up of apartment housing bathroom, which was approximately $100 m^2$ in size, has been established for the ventilation emciency measurement. In addition, the ventilation efficiency has been studied by the possibility of air-supply In. The diameters of flexible are 100 mm, 125 mm, and 150mm. It also have the length of 1.0m, and 1.5 m. The installation formats are I shape, L shape, and S shape. As a result of this measurement, the flexible which has the highest ventilation efficiency was the one has bigger diameter, short in length, and I shape installation format.

On the Short Term Air Pollution Dispersion Model for the Single Souce -Diffusion Experiment With Tracer Gas- (單一 排出源大氣汚染 短期모델에 관한 硏究 -Tracer Gas에 의한 擴散實驗-)

  • 李鍾範;姜寅求
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.84-96
    • /
    • 1989
  • To evaluate the short term air pollution dispersion model, the diffusion experiment was conducted on the flat terrain near Chuncheon. Sulfur hexafluoride $(SF_6)$ gas was used to determine the horizontal spread of plume $(\sigmay)$ for calculated by CRSTER model. Results show that CRSTER model underestimates $\sigma$y because averaging time adjustment is not applied to calculate the $\sigma$y. The scheme that can estimate the atmospheric stability more accurate than Turner method, was presented.

  • PDF

Effect of Contaminant Source Location on Indoor Air Quality

  • Lee, Hee-Kwan;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.E
    • /
    • pp.1-7
    • /
    • 1998
  • This paper presents an experimental study for understanding the indoor air quality in a room. A model room, which had a ceiling-mounted supply and a sidewall-mounted exhaust, was used to examine the effect of air exchange rate (AER) and contaminant source location (CSL) as a function of the elapsed time. A tracer gas method, using carbon monoxide tracer, gas analyzers, and a data acquisition system, was applied to study the ventilation air distribution and the tracer removal efficiency, so-called pollutant removal efficiency, in the model room. The experiment was composed of two parts; firstly the AER was varied to examine its effect on the ventilation air distribution and the ventilation effectiveness and secondly both AER and CSL were considered to determine their effect on the pollutant removal efficiency. It was found that the ventilation effectiveness in the model was proportional to AER but not linearly. It was also found that changing the CSL can improve the pollutant removal efficiency. In some cases, the efficiency improvement by increasing AER was achieved by simply changing CSL.

  • PDF

A Study on Ventilation Performance driven by Wind Force in Underground Parking Lots of Apartment - Influence of Opening Size and Surrounding Building - (공동주택 지하주차장의 풍력환기 성능에 관한 연구 - 환기구 면적 및 주변건물의 영향 -)

  • Roh, Ji Woong
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • As a series of studies about natural ventilation driven by wind in basement parking lots of apartment, the influence of opening size and surrounding buildings on ventilation rate was analyzed. Natural ventilation in underground parking lots almost rely on wind than temperature difference. To investigate natural ventilation driven by wind, wind tunnel tests by using scale model and tracer gas method were conducted. $CO_2$-gas concentration was measured, natural ventilation rates were calculated. The experimental results showed that the natural ventilation rate is more reliable to wind direction and surrounding building than opening size and distance between buildings. It was verified that surrounding buildings play a principal role in increasing air flow rate by accelerating wind speed, and growing turbulence intensity. And it showed that ventilation performance is able to be increased by oblique wind to entrance ramp than head on wind in underground parking lots with surrounding buildings.

Field Measurement Methods of Stream Reaeration Coefficient - Modified Gas Tracer Method - (Modified Gas Tracer Method를 이용한 하천의 재폭기계수)

  • 조영준;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.547-551
    • /
    • 1998
  • Reaeration coefficient is the physical absorption of oxygen from the atmosphere by water. It is the most important natural means by which a stream replaces the oxygen consumed in the biodegradation of organic wastes, and the rate constant describing this process is the reaeration coefficient, It. Reaeration coefficient is the dominant parameter affecting the use of water quality model. Therefore accurate estimation of the reaeration coefficient is essential for optimum water quality management. There is several method to estimate stream reaeration coefficient. In this study, it would be concluded that SI-peak method is of practical use when applied to small stream, and CRI method is adequate to large stream.

  • PDF

Development of Straightforward Method of Estimating LMA and LMR using Computational Fluid Dynamics Technology (전산유체역학 기법을 이용한 공기연령 산정 방법의 개발)

  • Park, Se-Jun;Lee, In-Bok;Hong, Se-Woon;Kwon, Kyeong-Seok;Ha, Tae-Hwan;Yun, Nam-Gyu;Kim, Hyung-Gewon;Kwon, Sun-Hong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.135-144
    • /
    • 2013
  • Ventilation efficiency has an important role in agricultural facilities such as greenhouse and livestock house to keep internally optimum environmental condition. Age-of-air concept allows to assess the ventilation efficiency of an agricultural facility according to estimating the ability of fresh air supply and contaminants emission using LMA and LMR. Most of these methods use a tracer gas method which has some limitations in experiment like dealing unstable and invisible gas. Therefore, the aim of this study was to develop a straightforward method to calculate age-of-air values with CFD simulation which has the advantage of saving computational time and resources and these method can solve the limitations in experiment using tracer gas method. The main idea of LMA computation is to solve the passive scalar transport equation with the assumption that the production of the time scalar throughout the room is uniform. In case of LMR calculation, the transport of the time scalar was reversed compulsively using UDF. The methodology to validate the results of this study was established by comparing with preceding research that had performed a computing LMA and LMR value by laboratory experiments and CFD simulations using tracer gas. As a result, the error was presented similarly level of results of preceding research. Some big errors could be caused by stagnated area and incongruity turbulence model. while the computational time was reduced to almost one fourth of that by preceding research.

토양내 총 NAPL과 공기접촉 NAPL의 측정을 위한 분별 NAPL 분배 추적자 기술의 개발

  • 최경민;김헌기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.29-32
    • /
    • 2004
  • Gaseous partitioning tracer test has been used for determining the volume and spatial distribution of residual non-aqueous phase liquid (NAPL) in the unsaturated soils. In this study, an experimental method for measuring the content of gas-exposed NAPL as well as that of total NAPL in a sand during air sparging was developed. Two different gaseous phase NAPL-partitioning tracers were used; n-pentane, with very low water solubility, was used as the tracer that partitions into NAPL that is only in contact with the mobile gas, and chloroform, with fairly good water solubility, was selected for detecting total NAPL content in the sand. Helium and difluromethanewere used as the non- reactive tracer and water-partitioning tracers, respectively. Using n-decane as a model NAPL (NAPL saturation of 0.018), 25.6% of total NAPL was detected by n-pentane at the water saturation of 0.68. Oniy 9.1% of total NAPL was detected by n-pentane at the water saturation of 0.84. This result implies that the quantity of gas-exposed NAPL increased about three times when the water saturation decreased from 0.84 to 0.68. At the water saturation of 0.68, more than 90% of total NAPL was detected by chloroform while 65.8% of total NAPL was detected by chloroform at the water saturation of 0.84. Considering that the removal rate of NAPL during air sparging for NAPL-contaminated aquifer is expected to be greatly dependent upon the spatial arrangement of NAPL phase with respect to the mobile gas, this new approach may provide useful information for investigating the mass transfer process during air-driven remedial processes fer NAPL-contaminated subsurface environment.

  • PDF