• Title/Summary/Keyword: Tracer concentration

검색결과 184건 처리시간 0.026초

소독부산물 최소화를 위한 운영조건 연구 (Operating Conditions for Minimization of DBPs (Disinfection by-Products) in Drinking Water Supply System)

  • 신형순;최필권;김종수;최일우;김상훈;김태현;이경희;이수문;장은아;정연훈;김주열
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.330-337
    • /
    • 2005
  • This study was carried out to propose the managemental improvement of the purification plants and the distribution facilities which can minimize the formation of disinfection by-products in drinking water distribution system. The disinfection by-products were highly created in the water treatment plant that the organic matters were high and the chlorine dosage was excessive. The concentration of DSPs was shown the highest value in August and the lowest value in December, because of temperature and pre-chlorine dosage effect. From the result of tracer test, the travel time from the treatment plant to the end of pipeline was around 3-4 days in summer, 5-6 days in winter, respectively, and the DSPs concentration of the reservoir(end of pipe) was 2-3 times higher than that of the beginning point. The improvement of the chlorination process and structural reformation of distribution facility was demanded to minimize the DSPs increase from purification plant to the end of pipe.

PFT법에 의한 수직적 3 ZONE 분할 조건에서의 환기량 측정 (Ventilation Measurement with PFT in Three-storied Detached House)

  • 김훈
    • 설비공학논문집
    • /
    • 제25권9호
    • /
    • pp.506-515
    • /
    • 2013
  • The PFT (PerFluorocarbon Tracergas Technique) is of advantage to field surveys for evaluating the ventilation condition, due to its simplicity and convenience. On the other hand, it requires researchers to make some additional considerations that include uncertainties, such as the substance concentration distribution in indoor air, representativeness of a sampler, deviation of emission sources, and analysis error. In this study, the PFT and $CO_2$ tracer gas methods were applied simultaneously, to evaluate the accuracy of PFT on six ventilation conditions in the three-storied detached house. The air exchange and the outdoor air introduction a between and into zones were measured. As the results, deviations of PFT concentration distributions were observed at a sufficiently low level for an accurate determination for a house where the interior height was large, and there were relatively many partition walls. However, when a uniform airflow appeared in the indoor air, it was also validated that the indoor air would be exhausted without sufficient mixing, and consequently the measurement error of the PFT would be large.

Mesh Stability Study for the Performance Assessment of a Deep Geological Repository Using APro

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • 방사성폐기물학회지
    • /
    • 제21권2호
    • /
    • pp.283-294
    • /
    • 2023
  • APro, developed in KAERI for the process-based total system performance assessment (TSPA) of deep geological disposal systems, performs finite element method (FEM)-based multiphysics analysis. In the FEM-based analysis, the mesh element quality influences the numerical solution accuracy, memory requirement, and computation time. Therefore, an appropriate mesh structure should be constructed before the mesh stability analysis to achieve an accurate and efficient process-based TSPA. A generic reference case of DECOVALEX-2023 Task F, which has been proposed for simulating stationary groundwater flow and time-dependent conservative transport of two tracers, was used in this study for mesh stability analysis. The relative differences in tracer concentration varying mesh structures were determined by comparing with the results for the finest mesh structure. For calculation efficiency, the memory requirements and computation time were compared. Based on the mesh stability analysis, an approach based on adaptive mesh refinement was developed to resolve the error in the early stage of the simulation time-period. It was observed that the relative difference in the tracer concentration significantly decreased with high calculation efficiency.

연직배수재를 이용한 토양세정시스템의 오염토양정화 특성 (The Characteristics of Soil Remediation by Soil Flushing System Using PVDs)

  • 박정준
    • 한국환경복원기술학회지
    • /
    • 제10권5호
    • /
    • pp.76-86
    • /
    • 2007
  • For the purpose of ground improvement by means of soil flushing systems. Incorporated technique with prefabricated vertical drains have been used for dewatering from fine-grained soils. The laboratory model tests were performed by using the flushing tracer solutions for silty soils and recorded the tracer concentration changes with the elapsed time and flow rates. A mathematical model for prediction of contaminant transport using the PVD technology has been developed. The clean-up times for the predictions on both soil condition indicate more of a sensitivity to the dispersivity parameter than to the extracted flow rate and vertical velocity parameters. Based on the results of the analyses, numerical analysis indicate that the most important factor to the in-situ soil remediation in prefabricated vertical drain system is the effective diameter of contaminated soil.

공동주택 지하주차장의 풍력환기 성능에 관한 연구 - 환기구 면적 및 주변건물의 영향 - (A Study on Ventilation Performance driven by Wind Force in Underground Parking Lots of Apartment - Influence of Opening Size and Surrounding Building -)

  • 노지웅
    • KIEAE Journal
    • /
    • 제12권1호
    • /
    • pp.29-34
    • /
    • 2012
  • As a series of studies about natural ventilation driven by wind in basement parking lots of apartment, the influence of opening size and surrounding buildings on ventilation rate was analyzed. Natural ventilation in underground parking lots almost rely on wind than temperature difference. To investigate natural ventilation driven by wind, wind tunnel tests by using scale model and tracer gas method were conducted. $CO_2$-gas concentration was measured, natural ventilation rates were calculated. The experimental results showed that the natural ventilation rate is more reliable to wind direction and surrounding building than opening size and distance between buildings. It was verified that surrounding buildings play a principal role in increasing air flow rate by accelerating wind speed, and growing turbulence intensity. And it showed that ventilation performance is able to be increased by oblique wind to entrance ramp than head on wind in underground parking lots with surrounding buildings.

해양 환경의 형광용존유기물에 관한 국내 연구 동향 (Domestic Research Trends on Fluorescent Dissolved Organic Matter in Marine Environment)

  • 김정현
    • Ocean and Polar Research
    • /
    • 제43권4호
    • /
    • pp.353-363
    • /
    • 2021
  • Fluorescent dissolved organic matter (FDOM) is referred to organic matter which absorbs efficiently solar radiation energy and fluorescence in the water column. The component and molecular structure of marine organic matter can be changed depending on the various substances and origins of organic matter, and then the organic matter has unique fluorescent properties. As the cutting-edge analytical techniques of optical measurement continuously developing from last few decades, a study on FDOM has been applied as a biogeochemical tracer to quantify the organic matter concentration and to investigate the behaviors and origins of organic matter. Especially, the marine environment around the Korean Peninsula is an ideal research area to study FDOM because of various oceanographic characteristics and the origins of organic matter. This study describes the general properties of FDOM and introduces the cycling and behaviors of marine organic matter based on the domestic research studies.

격리병실내 급배기구 위치에 따른 오염물 제거효율 비교 (Comparison of pollutant removal efficiency according to the locations of the supply and exhaust)

  • 원안나
    • 도시과학
    • /
    • 제9권2호
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.

복합토양층의 불포화대와 포화대에서 연속주입 추적자시험을 이용한 수리분산특성 연구 (A Study of Hydrodynamic Dispersions in the Unsaturated and the Saturated Zone of a Multi-soil Layer Deposit Using a Continuous Injection Tracer Test)

  • 정상용;강동환;이민희;손주형
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권4호
    • /
    • pp.48-56
    • /
    • 2006
  • 여러 개의 층으로 구성된 토양층에서 연속주입 추적자시험을 수행하여, 불포화대와 포화대 구간에서의 수리분산특성 차이를 추적자의 농도이력곡선, 시간에 따른 농도변화 및 농도변화율, 그리고 거리에 따른 농도비 분석을 통해 비교 연구하였다. 연속주입 추적자시험에 의하면, 약 160시간이 경과된 후에 불포화대와 포화대에서 Rhodamine WT 최대농도의 차이는 약 $13{\sim}15$배 정도에 달하였고, 시험시간 대 추적자 농도증가율의 차이는 약 10배 정도로 나타났다. 또한 시간에 따른 추적자 농도이력곡선의 변화와 농도변화율이 불포화대에 비하여 포화대에서 크게 나타났다. 주입공에서의 이격거리에 따른 추적자의 농도비는 포화대 구간에서 더 빠르게 선형적으로 감소하였으며, 그 이후에 농도비가 2배 이하로 완만해 지는데 걸린 시간은 포화대 구간이 더 길었다. 이러한 차이들은 여러 개의 층서로 구성된 토양층의 포화대에서는 지하수가 존재하며, 또한 매질의 불균질성이 크고 투수성이 다양하기 때문에, 비교적 균질한 층서를 이루는 불포화대에 비하여 추적자 용액의 농도는 낮고, 추적자의 확산이 느리게 진행되어진데서 기인하였다. 그리고 포화대 구간에서의 유효공극율은 $10.19{\sim}10.50%$, 종분산지수는 $0.80{\sim}l.98m$, 횡분산지수는 $0.02{\sim}0.04m$의 범위로 산정되었으며, 실내주상시험의 종분산지수와 비교할 때 12배 이상의 규모종속효과가 나타났다.

PIV/LIF기법에 의한 교반혼합기 내의 속도장과 농도장 동시 측정 (Simultaneous Measurement of Velocity and Concentration Field in a Stirred Mixer Using PIV/LIF Technique)

  • 정은호;윤상열;김경천
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.504-510
    • /
    • 2003
  • Simultaneous measurements of turbulent velocity and concentration field in a stirred mixer tank are carried out by using PIV/LIF technique. Instantaneous velocity fields are measured with a 1K$\times$1K CCD camera adopting the frame straddle method while the concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. It is found that the general features of the mixing pattern are quite dependent on the local flow characteristics during the rapid decay of mean concentration. However, the small scale mixing seems to be independent on the local turbulent velocity fluctuation.

PIV/LIF에 의한 교반혼합기 유동의 난류 속도/농도장 측정 및 POD해석 (Simultaneous Measurement of Velocity and Concentration Field in a Stirred Mixer Using PIV/LIF Techniqueut and POD Analysis)

  • 정은호;윤상열;김경천
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.101-104
    • /
    • 2002
  • Simultaneous measurement of turbulent velocity and concentration field in a stirred mixer tank is carried out by using PIV/LIF technique. Instantaneous velocity fields are measured by a $1K\times1K$ CCD camera adopting the frame straddle method while the concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. It is found that the general features of the mixing pattern are quite dependent on the local flow characteristics during the rapid decay of mean concentration. However, the small scale mixing seems to be independent on the local turbulent velocity fluctuation.

  • PDF