• Title/Summary/Keyword: Toxin gene

Search Result 223, Processing Time 0.031 seconds

Functional Metagenome Mining of Soil for a Novel Gentamicin Resistance Gene

  • Im, Hyunjoo;Kim, Kyung Mo;Lee, Sang-Heon;Ryu, Choong-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.521-529
    • /
    • 2016
  • Extensive use of antibiotics over recent decades has led to bacterial resistance against antibiotics, including gentamicin, one of the most effective aminoglycosides. The emergence of resistance is problematic for hospitals, since gentamicin is an important broad-spectrum antibiotic for the control of bacterial pathogens in the clinic. Previous study to identify gentamicin resistance genes from environmental samples have been conducted using culture-dependent screening methods. To overcome these limitations, we employed a metagenome-based culture-independent protocol to identify gentamicin resistance genes. Through functional screening of metagenome libraries derived from soil samples, a fosmid clone was selected as it conferred strong gentamicin resistance. To identify a specific functioning gene conferring gentamicin resistance from a selected fosmid clone (35-40 kb), a shot-gun library was constructed and four shot-gun clones (2-3 kb) were selected. Further characterization of these clones revealed that they contained sequences similar to that of the RNA ligase, T4 rnlA that is known as a toxin gene. The overexpression of the rnlA-like gene in Escherichia coli increased gentamicin resistance, indicating that this toxin gene modulates this trait. The results of our metagenome library analysis suggest that the rnlA-like gene may represent a new class of gentamicin resistance genes in pathogenic bacteria. In addition, we demonstrate that the soil metagenome can provide an important resource for the identification of antibiotic resistance genes, which are valuable molecular targets in efforts to overcome antibiotic resistance.

Cloning, Sequencing and Expression of apxIA, IIA, IIIA of Actinobacillus pleuropneumoniae Isolated in Korea (국내 분리 흉막폐렴균의 apxIA, IIA, IIIA 유전자 Cloning, 염기서열 분석 및 단백질 발현)

  • Shin, Sung-jae;Cho, Young-wook;Yoo, Han-sang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.2
    • /
    • pp.247-253
    • /
    • 2003
  • Actinobacillus pleuropneumoniae causes a highly contagious pleuropneumoniae in swine. The bacterium produces several virulence factors such as exotoxin, LPS, capsular polysaccharide, etc. Among them, the exotoxin, called Apx, has been focused as the major virulence factor, and the toxin consists of 4 gene cluster. apx CABD. apxA is the structural gene of toxin and has four different types, I, II, III, and IV. As the first step of development of a new subunit vaccine, the three different types of apxA gene were amplified from A. pleuropneumoniae isolated from Korea by PCR with primer designed based on the N- and C-terminal of the toxin. The sizes of apxIA, IIA and IIIA were 3,073, 2,971 and 3,159bps, respectively. The comparison of whole DNA sequences of apxIA, IIA and IIIA genes with those of the reference strain demonstrated 98%, 99% and 98% homology, respectively. In addition, the phylogenetic analysis was performed based on the amino acid sequences compared with 12 different RTX toxin family using the neighbor-joining method. ApxA proteins of Korean isolates were identical with reference strains in this study. All ApxA proteins were expressed in E. coli with pQE expression vector and identified using Western blot with polyclonal antibodies against culture supernatants of A. pleuropneumoniae serotype 2 or 5. The sizes of each expressed ApxA protein were about 120, 110, 125 kDa (M.W.), respectively. The results obtained in this study could be used for the future study to develop a new vaccine to porcine pleuropneumoniae.

Transfer of Bacillus thuringiensis toxin gene into Bacillus subtilis and its inoculation effects (식물 생장촉진 미생물의 외부 유전자 도입과 그 접종효과)

  • Rhee, Young-Hwan;Kim, Kwang-Sik;Kim, Yong-Woong;Kim, Yeong-Yil
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.361-366
    • /
    • 1992
  • The antagonistic bacteria, showing distinguished effect against Fusarium oxysporum and Rhizoctonia solani were isolated from the rhizosphares of horticultural plants and identified as Bacillus subtilis. The strains were studied for their chracteristics of biochemistry, physiology, antagonistic effect against plant pathogenic fungi, and growth promoting effect on horticultural plants. The Bacillus thuringiensis(BT) HD-1 toxin gene was introduced into these B. subtilis. The BT toxin genes on chromosome of the bacteria were identified by southern blotting, but its proteins were not detected by SDS-PAGE. These transformed bacteria showed growth promoting effect and showed also insecticidal and antagonistic effects against Bombix mori and fungi F. oxysporum and R. solani but not against nematode Bursaphelenchus xylophilus.

  • PDF

Inhibition of Bacillus cereus Growth and Toxin Production by Bacillus amyloliquefaciens RD7-7 in Fermented Soybean Products

  • Eom, Jeong Seon;Choi, Hye Sun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.44-55
    • /
    • 2016
  • Bacillus cereus is a gram-positive, rod-shaped, spore-forming bacterium that has been isolated from contaminated fermented soybean food products and from the environment. B. cereus produces diarrheal and emetic toxins and has caused many outbreaks of foodborne diseases. In this study, we investigated whether B. amyloliquefaciens RD7-7, isolated from rice doenjang (Korean fermented soybean paste), a traditional Korean fermented soybean food, shows antimicrobial activity against B. cereus and regulates its toxin gene expression. B. amyloliquefaciens RD7-7 exhibited strong antibacterial activity against B. cereus and inhibited the expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM). We also found that addition of water extracts of soybean and buckwheat soksungjang (Korean fermented soybean paste made in a short time) fermented with B. amyloliquefaciens RD7-7 significantly reduced the growth and toxin expression of B. cereus. These results indicate that B. amyloliquefaciens RD7-7 could be used to control B. cereus growth and toxin production in the fermented soybean food industry. Our findings also provide a basis for the development of candidate biological control agents against B. cereus to improve the safety of fermented soybean food products.

Characteristics of Bacteriophage Isolates and Expression of Shiga Toxin Genes Transferred to Non Shiga Toxin-Producing E. coli by Transduction

  • Park, Da-Som;Park, Jong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.710-716
    • /
    • 2021
  • A risk analysis of Shiga toxin (Stx)-encoding bacteriophage was carried out by confirming the transduction phage to non-Stx-producing Escherichia coli (STEC) and subsequent expression of the Shiga toxin genes. The virulence factor stx1 was identified in five phages, and both stx1 and stx2 were found in four phages from a total of 19 phage isolates with seven non-O157 STEC strains. The four phages, designated as ϕNOEC41, ϕNOEC46, ϕNOEC47, and ϕNOEC49, belonged morphologically to the Myoviridae family. The stabilities of these phages to temperature, pH, ethanol, and NaClO were high with some variabilities among the phages. The infection of five non-STEC strains by nine Stx-encoding phages occurred at a rate of approximately 40%. Non-STEC strains were transduced by Stx-encoding phage to become lysogenic strains, and seven convertant strains had stx1 and/or stx2 genes. Only the stx1 gene was transferred to the receptor strains without any deletion. Gene expression of a convertant having both stx1 and stx2 genes was confirmed to be up to 32 times higher for Stx1 in 6% NaCl osmotic media and twice for Stx2 in 4% NaCl media, compared with expression in low-salt environments. Therefore, a new risk might arise from the transfer of pathogenic genes from Stx-encoding phages to otherwise harmless hosts. Without adequate sterilization of food exposed to various environments, there is a possibility that the toxicity of the phages might increase.

Genetic Relationship between SCCmec Types and Virulence Factors of Methicillin-Resistant Staphylococcus aureus Clinical Isolates in Korea

  • Lim, Kwan-Hun;Lee, Gyu-Sang;Park, Min;Lee, Jin-Hee;Suh, In-Bum;Ryu, Sook-Won;Eom, Yong-Bin;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.16 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • The molecular epidemiological characteristics of methicillin-resistant Staphylococcus aureus (MRSA) isolates have demonstrated their genetic diversity and evolution. A total of 137 strains of MRSA clinical isolates was collected from Korean healthcare facility in 2007. The MRSA clinical isolates were analyzed by molecular typings (SCCmec element and agr locus typing), virule nce factor gene detections {(Panton-Valentine leukocidin (PVL), enterotoxin, exfoliative toxin and toxic shock syndrome toxin-1), and amplified fragment length polymorphism (AFLP)}. The MRSA clinical isolates were classified as SCCmec type II-agr type 1 (2 strains), type II-agr type 2 (79 strains), type III-agr type 1 (24 strains), type III-agr type 2 (2 strains), type IV-agr type 1 (27 strains), type IV-agr type 2 (2 strains), and non-typable (1 strain, agr type 3). Based on SCCmec types, SCCmec type II (95.1%) and III (88.5%) indicated higher multidrug resistance rate than SCCmec type IV (10.3%) (P<0.001). The most common enterotoxin genes were seg (83.8%), sei (83.1%), and sec (80.2%). The tst gene was present in 86 out of 137 (62.8%) MRSA isolates. All MRSA isolates were negative for PVL and exfoliative toxin genes. The combinations of toxin genes were observed in particular SCCmec types; 97.6% of SCCmec type II strains carried sec, seg, sei and tst genes, 73.0% of SCCmec type III strains carried sea gene, and 89.7% of SCCmec type IV strains carried sec, seg and sei genes. Each of the SCCmec types of MRSA isolates had distinct AFLP profile. In conclusion, SCCmec type II, agr type 1 and 2 have demonstrated to be the most common types in Korea, and the results indicated that the virulence factors are closely associated with their molecular types (SCCmec and agr types).

Cloning and Nucleotide Sequence Analysis of the Virulence Gene Cassette from Vibrio cholerae KNIH002 Isolated in Korea (국내 분리주인 Vibrio cholerae KNIH002로부터 독성 유전자 카세트의 클로닝 및 염기서열 분석)

  • 신희정;박용춘;김영창
    • Korean Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.205-210
    • /
    • 1999
  • 16brio cholerne is an important pathogenic organism that causes dimhea in human beings. V ciaoleroe KNIH002 was isolated from patients suffering with dian.heal disease in Korea. From Southern hybridization using the amplified PCR product of 307 bp as a probe. which was obtained from PCR reaction using primer detecting cholera toxin gene, we have found that the c b gene located in 4.5-kb fragmenl double digested with Pstl and BgllI of the chromosome. Therefore, we made mini-libraries of the isolate using PstI and Bgm restriction endonuclease and pBluescript SKU(+) vector. As a result. we cloned 4.5-kb PstI-BglII fragment containing the c a gene encoding a cholera toxin from the constructed mini-libraries of V olzolerae KNlH002 by colony hybridization using the same probes. This recombinant plasmid was named pCTX75. E. coii XL1- Blue harboring pCTX75 showed the cytotoxicity on Chinese Hamster Ovary cells. From the sequencing of he cloned recombinant plasmid, we confinned that it has virulence gene cassette consisting of ace, zot, ctx.4 and cf"~B gene. The ace and zot genes were composed of 291 hp and 1.200 bp with ATG initiation codon and TGA lennination codon, respectively. Nucleotide sequence of the ace gene exhibited 100% identity with that of V cholera E7946 El Tor Ogawa strains. But, nucleolide and amino acid sequence comparison of the zot gene exhibited 99% and 98.8% identity with that of V cholerae 395 Classical Ogawa stram, respectively. Specially. the Ala-100, Ala-272 and Ala-281 sites of Zoi polypeptide presented in V choleme 395 Classical Ogawa strain are replaced by Val in V cholerae KNIH002.

  • PDF

Identification of Food-Poisoning Bacteria (Bacillus cereus) and the Bacterial Toxin Genes for Application to Forensic Microbiology : A Case Report from National Forensic Service (법미생물 검사를 위한 식중독 세균(Bacillus cereus)의 동정 및 독소 유전자 검사법: 국립과학수사연구원 사례보고)

  • Cho, Yoonjung;Lee, Min Ho;Kim, Hyo Sook;Eom, Kiyoon;Kim, Min-Hee;Kim, Jong-Bae;Lee, Dong Sub
    • Journal of Science Criminal Investigation
    • /
    • v.11 no.3
    • /
    • pp.210-217
    • /
    • 2017
  • In the forensic microbiology laboratories, microorganism analyses from food are requested. There have been several cases of Bacillus cereus isolated from the samples requested to the National Forensic Service. B. cereus is an important pathogenic bacterium which can cause food-borne outbreaks. Therefore, we isolated B. cereus from anchovy aekjeot recently requested for microbial examination and identified using MSId based on the 16S rDNA sequence and real-time PCR method. We also conducted PCR for detection of diarrheal toxin genes and an emetic toxin gene and found the presence of nheABC, bceT and entFM diarrheal toxin genes in the B. cereus isolate. There are several clinically important food-poisoning bacteria that should be noted during inspection. In particular, B. cereus can cause food poisoning even when cooked foods are ingested, because B. cereus forms endo-spore which confers strong environmental resistance and heat resistance to the bacteria, and the bacterial emetic toxin also has heat resistance. Here we highlight the importance to distinguish clinically important bacteria such as B. cereus from food specimens, and we expect this study will provide procedures for identification of B. cereus and detection of the bacterial toxin genes for future cases in the forensic microbiology laboratories.

Development and Validation of a Perfect KASP Marker for Fusarium Head Blight Resistance Gene Fhb1 in Wheat

  • Singh, Lovepreet;Anderson, James A;Chen, Jianli;Gill, Bikram S;Tiwari, Vijay K;Rawat, Nidhi
    • The Plant Pathology Journal
    • /
    • v.35 no.3
    • /
    • pp.200-207
    • /
    • 2019
  • Fusarium head blight (FHB) is a devastating wheat disease with a significant economic impact. Fhb1 is the most important large effect and stable QTL for FHB resistance. A pore-forming toxin-like (PFT) gene was recently identified as an underlying gene for Fhb1 resistance. In this study, we developed and validated a PFT-based Kompetitive allele specific PCR (KASP) marker for Fhb1. The KASP marker, PFT_KASP, was used to screen 298 diverse wheat breeding lines and cultivars. The KASP clustering results were compared with gelbased gene specific markers and the widely used linked STS marker, UMN10. Eight disagreements were found between PFT_KASP and UMN10 assays among the tested lines. Based on the genotyping and sequencing of genes in the Fhb1 region, these genotypes were found to be common with a previously characterized susceptible haplotype. Therefore, our results indicate that PFT_KASP is a perfect diagnostic marker for Fhb1 and would be a valuable tool for introgression and pyramiding of FHB resistance in wheat cultivars.

Amino acids at N- and C-termini are required for the efficient production and folding of a cytolytic γ-endotoxin from Bacillus thuringiensis

  • Thammachat, Siriya;Pathaichindachote, Wanwarang;Krittanai, Chartchai;Promdonkoy, Boonhiang
    • BMB Reports
    • /
    • v.41 no.11
    • /
    • pp.820-825
    • /
    • 2008
  • Bacillus thuringiensis Cyt2Aa toxin is a mosquito-larvicidal and cytolytic $\delta$-endotoxin, which is synthesized as a protoxin and forms crystalline inclusions within the cell. These inclusions are solubilized under alkaline conditions and are activated by proteases within the larval gut. In order to assess the functions of the N-and C-terminal regions of the protoxin, several N- and C-terminal truncated forms of Cyt2Aa were constructed. It was determined that amino acid removal at the N-terminal, which disrupts the $\beta$1 structure, might critically influence toxin production and inclusion formation. The deletion of 22 amino acids from the C-terminus reduced the production and solubility of the toxin. However, the removal of more than 22 amino acids from the C-terminus or the addition of a bulky group to this region could result in the inability of the protein to adopt the proper folding. These findings directly demonstrated the critical roles of N- and C-terminal amino acids on the production and folding of the B. thuringiensis cytolytic $\delta$-endotoxin.