Browse > Article
http://dx.doi.org/10.4014/jmb.2102.02040

Characteristics of Bacteriophage Isolates and Expression of Shiga Toxin Genes Transferred to Non Shiga Toxin-Producing E. coli by Transduction  

Park, Da-Som (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
Park, Jong-Hyun (Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.5, 2021 , pp. 710-716 More about this Journal
Abstract
A risk analysis of Shiga toxin (Stx)-encoding bacteriophage was carried out by confirming the transduction phage to non-Stx-producing Escherichia coli (STEC) and subsequent expression of the Shiga toxin genes. The virulence factor stx1 was identified in five phages, and both stx1 and stx2 were found in four phages from a total of 19 phage isolates with seven non-O157 STEC strains. The four phages, designated as ϕNOEC41, ϕNOEC46, ϕNOEC47, and ϕNOEC49, belonged morphologically to the Myoviridae family. The stabilities of these phages to temperature, pH, ethanol, and NaClO were high with some variabilities among the phages. The infection of five non-STEC strains by nine Stx-encoding phages occurred at a rate of approximately 40%. Non-STEC strains were transduced by Stx-encoding phage to become lysogenic strains, and seven convertant strains had stx1 and/or stx2 genes. Only the stx1 gene was transferred to the receptor strains without any deletion. Gene expression of a convertant having both stx1 and stx2 genes was confirmed to be up to 32 times higher for Stx1 in 6% NaCl osmotic media and twice for Stx2 in 4% NaCl media, compared with expression in low-salt environments. Therefore, a new risk might arise from the transfer of pathogenic genes from Stx-encoding phages to otherwise harmless hosts. Without adequate sterilization of food exposed to various environments, there is a possibility that the toxicity of the phages might increase.
Keywords
Bacteriophage; Shiga toxin; transduction; non-pathogenic E. coli; convertant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dumke R, Schroter-Bobsin U, Jacobs E, Roske I. 2006. Detection of phages carrying the Shiga toxin 1 and 2 genes in waste water and river water samples. Lett. Appl. Microbiol. 42: 48-53.   DOI
2 Aertsen A, De Spiegeleer P, Vanoirbeek K, Lavilla M, Michiels CW. 2005. Induction of oxidative stress by high hydrostatic pressure in Escherichia coli. Appl. Environ. Microbiol. 71: 2226-2231.   DOI
3 Wagner PL, Waldor MK. 2002. Bacteriophage control of bacterial virulence. Infect. Immun. 70: 3985-399.   DOI
4 Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson, RP. 2009. Enumeration of bacteriophages by double agar overlay plaque assay, pp.69-76. In Clokie MRJ, Kropinski, AM (eds), Bacteriophages, Vol. 1. Humana Press, New York, USA.
5 Klaenhammer TR, McKay LL. 1975. Isolation and examination of transducing bacteriophage particles from Streptococcus lactis C2. J. Dairy Sci. 59: 396-404.   DOI
6 Kutter E. 2009. Phage host range and efficiency of plating, pp. 141-149. In Clokie MRJ, Kropinski, AM (eds.), Bacteriophages, Vol. 1. Humana Press, New York, USA.
7 Kruger A, Paula MA, Lucchesi A. 2014. Shiga toxins and stx phages: highly diverse entities. Microbiol.-Reading 161: 451-462.   DOI
8 Herold S, Karch H, Schmidt H. 2004. Shiga toxin-encoding phages-genomes in motion. Int. J. Med. Microbiol. 294: 115-21.   DOI
9 Calderwood SB, Auclair F, Donohue-Rolfe A, Keusch GT, Mekalanos JJ. 1987. Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 4364-4368.   DOI
10 Jackson MP, Neill RJ, O'Brien AD, Holmes RK, Newland JW. 1987. Nucleotide sequence analysis and comparison of the structural genes for Shiga-like toxin I and Shiga-like toxin II encoded by bacteriophages from Escherichia coli 933. FEMS. Microbiol. Lett. 44: 109-114.   DOI
11 Bielaszewska M, Prager R, Kock R, Mellmann A, Zhang W, Tschape H, et al. 2007. Shiga toxin gene loss and transfer in vitro and in vivo during enterohemorrhagic Escherichia coli O26 infection in humans. Appl. Environ. Microbiol. 73: 3144-3150.   DOI
12 Ye WF, Du M, Zu MJ. 2012. High temperature in combination with UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157:H7 to non-pathogenic E. coli. PLoS One 7: e31308.   DOI
13 Amisano G, Fornasero S, Migliaretti G, Caramello S, Tarasco V, Savino F. 2011. Diarrheagenic Escherichia coli in acute gastroenteritis in infants in North-West Italy. New Microbiologica 34: 45-51.
14 Sanchez S, Garcia-Sanchez A, Martinez R, Blanco J, Blanco JE, Blanco M, et al. 2009. Detection and characterisation of Shiga toxin-producing Escherichia coli other than Escherichia coli O157:H7 in wild ruminants. Vet. J. 180: 384-38.   DOI
15 Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng Y, Lai LC, et al. 1998. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli. Mol. Microbiol. 28: 1-4.   DOI
16 Perna NT, Mayhew GF, Posfai G, Elliott S, Donnenberg MS, Kaper JB, et al. 1998. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66: 3810-3817.   DOI
17 Karmali MA. 2009. Host and pathogen determinants of verocytotoxin-producing Escherichia coli associated hemolytic uremic syndrome. Kidney Int. 112: S4-S7.   DOI
18 Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 26: 822-880.   DOI
19 Hyman P, Abedon ST. 2009. Practicla methods for determing phage growth papameters Phage host range and efficiency of plating, pp. 175-202. In Clokie MRJ, Kropinski, AM (eds.), Bacteriophages, Vol. 1. Humana Press, New York, USA.
20 Gerrish RS, Lee JE, Reed J, Williams J, Farrell LD, Spiegel KM, et al. 2007. PCR versus hybridization for detecting virulence genes of enterohemorrhagic Escherichia coli. Emerg. Infect. Dis. 13: 1253.   DOI
21 Schmidt H, Beutin L, Karch H. 1995. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect. Immun. 63: 1055-1061.   DOI
22 Speirs J, Stavric S, Buchanan B. 1991. Assessment of two commercial agglutination kits for detecting Escherichia coli heat-labile enterotoxin. Can. J. Microbiol. 37: 877-880.   DOI
23 Otawa K, Lee SH, Yamazoe A, Onuki M, Satoh H, Mino T. 2007. Abundance, diversity, dynamics of viruses on microorganisms in activated sludge processes. Microb. Ecol. 53: 143-152.   DOI
24 Wu Q, Liu W. 2009. Determination of virus abundance, diversity and distribution in a municipal wastewater treatment plant. Water Res. 43: 1101-1109.   DOI
25 Rohwer F, Thurber RV. 2009. Viruses manipulate the marine environment. Nature 459: 207-212.   DOI
26 Muniesa M, Lucena F, Jofre J. 1999. Comparative survival of free Shiga toxin 2-encoding phages and Escherichia coli strains outside the gut. Appl. Environ. Microbiol. 65: 5615-5618.   DOI
27 Kim EJ, Chang HJ, Kwak S, Park JH. 2016. Virulence factors and stability of coliphages specific to Escherichia coli O157:H7 and to various E. coli infection. J. Microbiol. Biotechnol. 20: 2060-2066.
28 Imamovic L, Ballested E, Jofre J, Muniesa M. 2010. Quantification of Shiga toxin-converting bacteriophages in wastewater and in fecal samples by real-time quantitative PCR. Appl. Environ. Microbiol. 76: 5693-5701.   DOI
29 Pushpinder KL, Joyjit S, Divya J. 2018. Characterization of bacteriophages targeting non-O157 Shiga toxigenic Escherichia coli. J. Food Prot. 81: 785-794.   DOI
30 Rode TM, Axelsson A, Granum PE, Heir E, Holck A, L'Abee-Lund TM.2011. High stability of Stx2 phage in food and under foodprocessing conditions. Appl. Environ. Microbiol. 77: 5336-5341.   DOI
31 Allue-Guardia A, Martinez-Castillo A, Muniesa M. 2014. Persistence of infectious Stx bacteriophages after disinfection treatments. Appl. Environ. Microbiol. 80: 2142-2149.   DOI
32 Schmidt H. 2001. Shiga-toxin-converting bacteriophages. Res. Microbiol. 152: 687-695.   DOI
33 Yoo BB, Liu Y, Juneja V, Huang L, Hwang CA. 2017. Effect of environmental stresses on the survival and cytotoxicity of Shiga toxin-producing Escherichia coli. Food Qual. Safety 1: 139-146.   DOI
34 Olesen I, Lene L. 2010. Relative gene transcription and pathogenicity of enterohemorrhagic Escherichia coli after long-term adaptation to acid and salt stress. Int. J. Food Microbiol. 141: 248-253.   DOI
35 Johnson AD, Poteete AR, Lauer G, Sauer RT, Ackers GK, Ptashne M. 1981. λ repressor and cro-components of an efficient molecular switch. Nature 294: 217-223.   DOI
36 Lee YD, Kim JY, Park JH. 2013. Characteristics of coliphage ECP4 and potential use as a sanitizing agent for biocontrol of Escherichia coli O157:H7. Food Control 34: 255-260.   DOI
37 Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, et al. 2012. Phage-bacteria infection networks. Trends Microbiol. 21: 82-91.   DOI
38 Neely MN, Friedman DI. 1998. Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene 223: 105-113.   DOI
39 Fang Y, Mercer RG, McMullen LM, Ganzle MG. 2017. Induction of Shiga toxin-encoding prophage by abiotic environmental stress in food. Appl. Environ. Microbiol. 83: e01378-17.
40 Los JM, Los M, Wegrzyn A, Wegrzyn Z. 2010. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol. Med. Microbiol. 58: 322-329.   DOI