• 제목/요약/키워드: Toxicants

검색결과 174건 처리시간 0.02초

Potential health effects of emerging environmental contaminants perfluoroalkyl compounds

  • Lee, Youn Ju
    • Journal of Yeungnam Medical Science
    • /
    • 제35권2호
    • /
    • pp.156-164
    • /
    • 2018
  • Environmental contaminants are one of the important causal factors for development of various human diseases. In particular, the perinatal period is highly vulnerable to environmental toxicants and resultant dysregulation of fetal development can cause detrimental health outcomes potentially affecting life-long health. Perfluoroalkyl compounds (PFCs), emerging environmental pollutants, are man-made organic molecules, which are widely used in diverse industries and consumer products. PFCs are non-degradable and bioaccumulate in the environment. Importantly, PFCs can be found in cord blood and breast milk as well as in the general population. Due to their physicochemical properties and potential toxicity, many studies have evaluated the health effects of PFCs. This review summarizes the epidemiological and experimental studies addressing the association of PFCs with neurotoxicity and immunotoxicity. While the relationships between PFC levels and changes in neural and immune health are not yet conclusive, accumulative studies provide evidence for positive associations between PFC levels and the incidence of attention deficit hyperactivity disorder and reduced immune response to vaccination both in children and adults. In conclusion, PFCs have the potential to affect human health linked with neurological disorders and immunosuppressive responses. However, our understanding of the molecular mechanism of the effects of PFCs on human health is still in its infancy. Therefore, along with efforts to develop methods to reduce exposure to PFCs, studies on the mode of action of these chemicals are required in the near future.

Movement Responses of Sludge Worm Tubifex tubifex (Annelida, Oligochaeta) in Three Different Copper Concentrations

  • Hyejin Kang;Mi-Jung Bae;Young-Seuk Park
    • 생태와환경
    • /
    • 제55권3호
    • /
    • pp.251-257
    • /
    • 2022
  • Monitoring and assessing aquatic ecosystems using the behavior of organisms is essential for sustainable ecosystem management. Oligochaetes, which inhabit various freshwater ecosystems, are frequently used to evaluate the environmental conditions of freshwater ecosystems. Tubifex tubifex (Müller, 1774) (Oligochaeta, Tubificidae) is tolerant to organic pollution and has been used to evaluate the toxicity of toxicants, including heavy metals. We studied the behavioral responses of T. tubifex to three different copper concentrations (0.1, 0.5, and 1.0 mg L-1). The specimens were exposed to copper in an observation cage containing 150 mL of dechlorinated water. Movement behavior (diameter, speed, acceleration, meander, and turning rate) was continuously observed for two hours before and after the copper treatments. After the treatments, the diameter shrank and showed rapid twisting movement under all the copper conditions. The turning rate had a positive correlation with meander and acceleration both before and after treatment at all three concentrations, whereas speed and meander had a negative correlation. Length and turning rate also showed a negative correlation. The correlation coefficient between speed and acceleration in the highest copper concentration changed from positive before treatment (r=0.64) to negative (r= -0.52) after treatment. Our results present the possibility of using behavioral parameters to detect copper contamination in freshwater ecosystems.

Effect of PCB on the Oocyte Maturation and Proges- terone Production of Frog, Rana dybowskii in Vitro

  • 고선근;이두표
    • 한국환경생태학회지
    • /
    • 제17권1호
    • /
    • pp.18-25
    • /
    • 2003
  • PCB가 산개구리 여포난자의 성숙과 프로제스테론 생성에 미치는 영향을 알아보기 위해 배양액에 일정 농도의 PCB(Arochlor 1248)를 농도별로 첨가한 후 난자들을 20시간 배양하였다. 난자의 성숙과 프로제스테론 생성을 유도하기 위하여 FPH(Frog pituitary homogenate: 0.01p.e/$m\ell$)를 사용하였으며 여포난자의 성숙율은 난자 내의 핵막 붕괴율로부터 구하였고 프로제스테론 생성은 배양액내로 분비되는 양을 조사하였다. 실험 결과 PCB는 10ppb의 농도부터 여포난자의 성숙과 프로제스테론 생성을 현저히 억제하였으며 PCB 작용의 가역성을 조사하기 위해 3시간 동안 여포난자들을 PCB에 노출시킨 후 보통 배양액으로 옮겨 계속 배양을 해 본 결과 PCB 2.5ppb에서는 가역성을 나타내었으나 5 ppb에서는 비가역적인 손상을 주었다. 이와 같이 PCB는 낮은 농도에서 난자의 성숙과 프로제스테론의 분비 등을 억제하였으며, 개구리 난자 배양계는 환경오염물질의 독성 검정에 요긴하게 사용할 수 있음을 시사하였다

A Critical Evaluation of DNA Adducts as Biological Markers for Human Exposure to Polycyclic Aromatic Compounds

  • Godschalk, Roger W.L.;Van Schooten, Frederik-Jan;Bartsch, Helmut
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.1-11
    • /
    • 2003
  • The causative role of polycyclic aromatic hydrocarbons (PAH) in human carcinogenesis is undisputed. Measurements of PAH-DNA adduct levels in easily accessible white blood cells therefore represent useful early endpoints in exposure intervention of chemoprevention studies. The successful applicability of DNA adducts as early endpoints depends on several criteria:i.adduct levels in easily accessible surrogate tissues should reflect adduct levels in target-tissues, ii. toxicokinetics and the temporal relevance should be properly defined.iii. sources of inter- and intra-individual variability must be known and controllable, and finally iv. adduct analyses must have advantages as compared to other markers of PAH-exposure. In general, higher DNA adduct levels or a higher proportion of subjects with detectable DNA adduct levels were found in exposed individuals as compared with non-exposed subjects, but saturation may occur at high exposures. Furthermore, DNA adduct levels varied according to changes in exposure, for example smoking cessation resulted in lower DNA adduct levels and adduct levels paralleled seasonal variations of air-pollution. Intra-individual variation during continuous exposure was low over a short period of time (weeks), but varied significantly when longer time periods (months) were investigated. Inter-individual variation is currently only partly explained by genetic polymorphisms in genes involved in PAH-metabolism and deserves further investigation. DNA adduct measurement may have three advantages over traditional exposure assessment: i. they can smooth the extreme variability in exposure which is typical for environmental toxicants and may integrate exposure over a longer period of time. Therefore, DNA adduct assessment may reduce the monitoring effort. ii. Biological monitoring of DNA adducts accounts for all exposure routes. iii. DNA adducts may account for inter-individual differences in uptake, elimination, distribution, metabolism and repair amongst exposed individuals. In conclusion, there is now a sufficiently large scientific basis to justify the application of DNA adduct measurement as biomarkers in exposure assessment and intervention studies. Their use in risk-assessment, however, requires further investigation.

Eco-toxicogenomics Research with Fish

  • Park, Kyeong-Seo;Kim, Han-Na;Gu, Man-Bock
    • Molecular & Cellular Toxicology
    • /
    • 제1권1호
    • /
    • pp.17-25
    • /
    • 2005
  • There are some critical drawbacks in the use of biomarkers for a global assessment of the toxicological impacts many chemicals and environmental pollutants have, primarily due to an individual biomarker's specificity for an explicit chemical or toxicant. In other words, the biomarker-based assessment methodology used to analyze toxicological effects lacks a high-throughput capability. Therefore, eco-toxicogenomics, or the study of toxicogenomics with organisms present within a given environmental locale, has recently been introduced with the advent of the so-called "-omics" era, which began with the creation of microarray technologies. Fish are comparable with humans in their toxicological responses and thus data from toxicogenomic studies performed with fish could be applied, with appropriate tools and implementation protocols, to the evaluation of environments where human or animal health is of concern. At present, there have been very active research streams for developing expression sequence tag (EST) databases (DBs) for zebra fish and rainbow trout. Even though few reports involve toxicogenomic studies with fish, a few groups have successfully fabricated and used cDNA microarrays or oligo DNA chips when studying the toxicological impacts of hypoxia or some toxicants with fish. Furthermore, it is strongly believed that this technology can also be implemented with non-model fish. With the standardization of DNA microarray technologies and ample progress in bioinformatics and proteomic technologies, data obtained from DNA microarray technologies offer not only multiple biomarker assays or an analysis of gene expression profiles, but also a means of elucidating gene networking, gene-gene relations, chemical-gene interactions, and chemical-chemical relationships. Accordingly, the ultimate target of eco-toxicogenomics should be to predict and map the pathways of stress propagation within an organism and to analyze stress networking.

Application of Toxicogenomic Technology for the Improvement of Risk Assessment

  • Hwang, Myung-Sil;Yoon, Eun-Kyung;Kim, Ja-Young;Son, Bo-Kyung;Jang, Dong-Deuk;Yoo, Tae-Moo
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.260-266
    • /
    • 2008
  • Recently, there has been scientific discussion on the utility of -omics techniques such as genomics, proteomics, and metabolomics within toxicological research and mechanism-based risk assessment. Toxicogenomics is a novel approach integrating the expression analysis of genes (genomic) or proteins (proteomic) with traditional toxicological methods. Since 1999, the toxicogenomic approach has been extensively applied for regulatory purposes in order to understand the potential toxic mechanisms that result from chemical compound exposures. Therefore, this article's purpose was to consider the utility of toxicogenomic profiles for improved risk assessment, explore the current limitations in applying toxicogenomics to regulation, and finally, to rationalize possible avenues to resolve some of the major challenges. Based on many recent works, the significant impact toxicogenomic techniques would have on human health risk assessment is better identification of toxicity pathways or mode-of-actions (MOAs). In addition, the application of toxicogenomics in risk assessment and regulation has proven to be cost effective in terms of screening unknown toxicants prior to more extensive and costly experimental evaluation. However, to maximize the utility of these techniques in regulation, researchers and regulators must resolve many parallel challenges with regard to data collection, integration, and interpretation. Furthermore, standard guidance has to be prepared for researchers and assessors on the scientifically appropriate use of toxicogenomic profiles in risk assessment. The National Institute of Toxicological Research (NITR) looks forward to an ongoing role as leader in addressing the challenges associated with the scientifically sound use of toxicogenomics data in risk assessment.

Functional Gene Analysis to Identify Potential Markers Induced by Benzene in Two Different Cell Lines, HepG2 and HL-60

  • Kim, Youn-Jung;Song, Mi-Kyung;Sarma, Sailendra Nath;Choi, Han-Saem;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.183-191
    • /
    • 2008
  • Volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. And VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Benzene is the most widely used prototypical VOC and the toxic mechanisms of them are still unclear. The multi-step process of toxic mechanism can be more fully understood by characterizing gene expression changes induced in cells by toxicants. In this study, DNA microarray was used to monitor the expression levels of genes in HepG2 cells and HL-60 cells exposed to the benzene on IC20 and IC50 dose respectively. In the clustering analysis of gene expression profiles, although clusters of HepG2 and HL-60 cells by benzene were divided differently, expression pattern of many genes observed similarly. We identified 916 up-regulated genes and 1,144 down-regulated genes in HepG2 cells and also 1,002 up-regulated genes and 919 down-regulated genes in HL-60 cells. The gene ontology analysis on genes expressed by benzene in HepG2 and HL-60 cells, respectively, was performed. Thus, we found some principal pathways, such as, focal adhesion, gap junction and signaling pathway in HepG2 cells and toll-like receptor signaling pathway, MAPK signaling pathway, p53 signaling pathway and neuroactive ligand-receptor interaction in HL-60 cells. And we also found 16 up-regulated and 14 down-regulated commonly expressed total 30 genes that belong in the same biological process like inflammatory response, cell cycle arrest, cell migration, transmission of nerve impulse and cell motility in two cell lines. In conclusion, we suggest that this study is meaningful because these genes regarded as strong potential biomarkers of benzene independent of cell type.

The Association of Maternal Food Intake and Blood Lead Levels in Pregnant and Their Newborns

  • Lee, Ah-Young;Kim, Hye-Sook;Kim, Ki-Nam;Ha, Eun-Hee;Park, Hye-Sook;Ha, Mi-Na;Kim, Yang-Ho;Hong, Yun-Chul;Chang, Nam-Soo
    • Molecular & Cellular Toxicology
    • /
    • 제4권1호
    • /
    • pp.61-65
    • /
    • 2008
  • Although dietary intake of pregnant is supposed to have beneficial effects on development of infants, it may be harmful for fetal growth and development since specific food is a common source of toxicants including heavy metal. The purpose of this study was to investigate the association of maternal food intake and mid-pregnancy and their newborns blood lead levels. Pregnant women of 18-20 weeks of gestation were recruited from prenatal clinic in Seoul, Cheonan and Ulsan. In 422 pregnant women, dietary intake during pregnancy was assessed by a 24-hour recall method. Blood sample from pregnant (18-20 wks) and their cord blood at delivery were collected. Blood leas levels were analyzed by atomic-absorption spectrometry methods. Pregnant blood lead levels whose meat and meat products intake were in the highest quartile was significantly higher compared to the lowest quartile. Maternal meat and meat products intake was positively correlated maternal blood lead level (r=0.120, P=0.014). After adjusting for age, maternal blood lead level was positively correlated with their newborn blood lead level (r=0.303, P=0.030). As maternal food intake effects on blood lead levels of pregnant, careful regulation of food intake during pregnancy is perceives to be important in order to bring about desirable pregnancy outcomes.

Uncertainties in Risk Assessment

  • Hattis Dale;Froines John
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.440-449
    • /
    • 1994
  • Current risk assessment practices largely reflect the need for a consistent set of relatively rapid, first-cut procedures to assess 'plausible upper limits' of various risks. These practices have important roles to play in 1) screening candidate hazards for initial attention and 2) directing attention to cases where moderate-cost measures to control exposures are likely to be warranted, in the absence of further extensive (and expensive) data gathering and analysis. A problem with the current practices, however, is that they have led assessors to do a generally poor job of analyzing and expressing uncertainties, fostering 'One-Number Disease' (in which everything from one's social policy position on risk acceptance to one's technical judgment on the likelihood of different cancer dose-response relationships is rolled into a single quantity). At least for analyses that involve relatively important decisions for society (both relatively large potential health risks and relatively large potential economic costs or other disruptions), we can and should at least go one further step - and that is to assess and convey both a central tendency estimate of exposure and risk as well as our more conventional 'conservative' upper-confidence-limit values. To accomplish this, more sophisticated efforts are needed to appropriately represent the likely effects of various sources of uncertainty along the casual chain from the release of toxicants to the production of adverse effects. When the effects of individual sources of uncertainty are assessed (and any important interactions included), Monte Carlo simulation procedures can be used to produce an overall analysis of uncertainties and to highlight areas where uncertainties might be appreciably reduced by further study. Beyond the information yielded by such analyses for decision-making in a few important cases, the value of doing several exemplary risk assessments in. this way is that a set of benchmarks can be defined that will help calibrate the assumptions used in the larger number of risk assessments that must be done by 'default' procedures.

  • PDF

Safety Assessment of Foods Produced Using Recombinant DNA Techniques

  • Toyoda, Masatake
    • Toxicological Research
    • /
    • 제17권
    • /
    • pp.167-171
    • /
    • 2001
  • The introduction of genetically modified crops has raised concerns regarding safety issues over the insertion of foreign genes into plant genomes using recombinant DNA technology. Since 1991 in Japan, 29 foods and 6 food additives have been evaluated, based on the "Guideline for Safety Assessment", before these foods were marketed. The MHW, however, decided that safety assessment of such foods and food additives should be legally imposed. because soon such foods and food additives are expected to circulate globally and a new system for assessing safety of such foods and food additives at a pre-market stage is necessary, in order to avoid the distribution of any genetically modified foods that have had no safety assessment. The MHW published relevant announcements to amend existing regulations on 1 May 2000. "Standards for safety assessment of seed plant" is established based on a concept of substantial equivalence, and applicable to the products which are regarded as equivalent to the existing products used as foods and food additives. The characterization of the food products entails consideration of the molecular characterization. phenotypic and compositional characteristics, key nutrients and toxicants, and toxicity and allergenicity of the introduced proteins, and if there are indications of unintended effects of the modification, whether further safety testing (animal studies etc.) is needed should be considered. Safety and wholesomeness studies with whole foods should be care fully designed in order to avoid nutritional imbalances causing artifacts and uninterpretable results as was the case of Dr. Pusztaiis report. A case study of genetically modified soybeans (glyphosate-tolerant soybeans) on the immune system of rats and mice is shown. Chemical compositions were also compared with those of the non-GM soybeans. The studies failed to detect any differences in immuno-toxic activity.muno-toxic activity.

  • PDF