Browse > Article
http://dx.doi.org/10.11614/KSL.2022.55.3.251

Movement Responses of Sludge Worm Tubifex tubifex (Annelida, Oligochaeta) in Three Different Copper Concentrations  

Hyejin Kang (National Institute of Ecology)
Mi-Jung Bae (Nakdonggang National Institute of Biological Resources)
Young-Seuk Park (Department of Biology, Kyung Hee University)
Publication Information
Abstract
Monitoring and assessing aquatic ecosystems using the behavior of organisms is essential for sustainable ecosystem management. Oligochaetes, which inhabit various freshwater ecosystems, are frequently used to evaluate the environmental conditions of freshwater ecosystems. Tubifex tubifex (Müller, 1774) (Oligochaeta, Tubificidae) is tolerant to organic pollution and has been used to evaluate the toxicity of toxicants, including heavy metals. We studied the behavioral responses of T. tubifex to three different copper concentrations (0.1, 0.5, and 1.0 mg L-1). The specimens were exposed to copper in an observation cage containing 150 mL of dechlorinated water. Movement behavior (diameter, speed, acceleration, meander, and turning rate) was continuously observed for two hours before and after the copper treatments. After the treatments, the diameter shrank and showed rapid twisting movement under all the copper conditions. The turning rate had a positive correlation with meander and acceleration both before and after treatment at all three concentrations, whereas speed and meander had a negative correlation. Length and turning rate also showed a negative correlation. The correlation coefficient between speed and acceleration in the highest copper concentration changed from positive before treatment (r=0.64) to negative (r= -0.52) after treatment. Our results present the possibility of using behavioral parameters to detect copper contamination in freshwater ecosystems.
Keywords
movement behavior; quantitative behavior; toxicity monitoring; oligochaetes; heavy metals;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ali, H., E. Khan and I. Ilahi. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry 2019: 6730305.
2 Bae, M.-J., E.-J. Kim and Y.-S. Park. 2021. Comparison of invasive apple snail(Pomacea canaliculata) behaviors in different water temperature gradients. Water 13: 1149.
3 Bouche, M.L., F. Habets, S. Biagianti-Risbourg and G. Vernet. 2000. Toxic effects and bioaccumulation of cadmium in the aquatic oligochaete Tubifex tubifex. Ecotoxicology and Environmental Safety 46: 246-251.   DOI
4 Gerhardt, A. 2009. Screening the toxicity of Ni, Cd, Cu, ivermectin, and imidacloprid in a short-term automated behavioral toxicity test with Tubifex tubifex (Muller 1774) (Oligochaeta). Human and Ecological Risk Assessment: An International Journal 15: 27-40.   DOI
5 Ji, C.-W. and Y.-S. Park. 2012. Characterising movement patterns of medaka (Oryzias latipes) in response to copper analysed by using a self-organising map. WIT Transactions on Ecology and the Environment 162: 137-146.
6 Ji, C.W., Y.-S. Park, Y. Cui, H. Wang, I.-S. Kwak and T.-S. Chon. 2020. Analyzing the response behavior of Lumbriculus variegatus (Oligochaeta: Lumbriculidae) to different concentrations of copper sulfate based on line body shape detection and a recurrent self-organizing map. International Journal of Environmental Research and Public Health 17: 2627.
7 Johnson, R.K., T. Wiederholm and D.M. Rosenberg. 1993. Freshwater biomonitoring using individual organisms, populations and species assemblages of benthic macroinvertebrates, p. 40-158. In: Freshwater Biomonitoring and Benthic Macroinvertebrates(Rosenberg, D.M. and V.H. Resh, eds.). Chapman & Hall, New York.
8 Kang, H.-J., M.-J. Bae and Y.-S. Park. 2016. Ecotoxicological studies using aquatic oligochaetes: review. Korean Journal of Ecology and Environment 49: 343-353.   DOI
9 Kang, H., M.-J. Bae, D.-S. Lee, S.-J. Hwang, J.-S. Moon and Y.-S. Park. 2017a. Distribution patterns of the freshwater oligochaete Limnodrilus hoffmeisteri influenced by environmental factors in streams on a Korean nationwide scale. Water 9: 921.
10 Kang, H., M.-J. Bae and Y.-S. Park. 2017b. Behavioral response of Tubifex tubifex to changes of water temperature and substrate composition. Korean Journal of Ecology and Environment 50: 355-361.   DOI
11 Kornijow, R., K. Pawlikowski, L.A. Bledzki, A. Drgas, K. Piwosz, A. Ameryk and J. Calkiewicz. 2021. Co-occurrence and potential resource partitioning between oligochaetes and chironomid larvae in a sediment depth gradient. Aquatic Sciences 83: 51.
12 Meller, M., P. Egeler, J. Rombke, H. Schallnass, R. Nagel and B. Streit. 1998. Short-term toxicity of lindane, hexachlorobenzene, and copper sulfate to tubificid sludgeworms (Oligochaeta) in artificial media. Ecotoxicology and Environmental Safety 39: 10-20.   DOI
13 Kumar, K.S. and K.-H. Shin. 2017. Effect of copper on marine microalga Tetraselmis suecica and its influence on intraand extracellular iron and zinc content. Korean Journal of Ecology and Environment 50: 16-28.   DOI
14 Lucan-Bouche, M.-L., S. Biagianti-Risbourg, F. Arsac and G. Vernet. 1999. An original decontamination process developed by the aquatic oligochaete Tubifex tubifex exposed to copper and lead. Aquatic Toxicology 45: 9-17.   DOI
15 Maestre, Z., M. Martinez-Madrid and P. Rodriguez. 2009. Monitoring the sensitivity of the oligochaete Tubifex tubifex in laboratory cultures using three toxicants. Ecotoxicology and Environmental Safety 72: 2083-2089.   DOI
16 Mermillod-Blondin, F. 2011. The functional significance of bioturbation and biodeposition on biogeochemical processes at the water-sediment interface in freshwater and marine ecosystems. Journal of the North American Benthological Society 30: 770-778.   DOI
17 Milani, D., T.B. Reynoldson, U. Borgmann and J. Kolasa. 2003. The relative sensitivity of four benthic invertebrates to metals in spiked-sediment exposures and application to contaminated field sediment. Environmental Toxicology and Chemistry 22: 845-854.   DOI
18 O̓Gara, B.A., V.K. Bohannon, M.W. Teague and M.B. Smeaton. 2004. Copper-induced changes in locomotor behaviors and neuronal physiology of the freshwater Oligochaete, Lumbriculus variegatus. Aquatic Toxicology 69: 51-66.   DOI
19 Park, Y.-S., N.-I. Chung, K.-H. Choi, E.Y. Cha, S.-K. Lee and T.-S. Chon. 2005. Computational characterization of behavioral response of medaka (Oryzias latipes) treated with diazinon, Aquatic Toxicology 71: 215-228.   DOI
20 R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
21 Rathore, R.S. and B.S. Khangarot. 2003. Effects of water hardness and metal concentration on a freshwater Tubifex tubifex Muller. Water, Air, and Soil Pollution 142: 341-356.   DOI
22 Reynoldson, T., P. Rodriguez and M. Martinez-Madrid. 1996. A comparison of reproduction, growth and acute toxicity in two populations of Tubifex tubifex (Muller, 1774) from the North American Great Lakes and Northern Spain. Hydrobiologia 334: 199-206.   DOI
23 Rodriguez, P. and T.B. Reynoldson. 2011. The Pollution Biology of Aquatic Oligochaetes. Springer, New York.
24 The Mathworks. 2001. MATLAB, Version 7.0. The Mathworks, Inc., Massachusetts, USA.
25 Therneau, T. and B. Atkinson. 2019. rpart: Recursive partitioning and regression trees. R package version 4.1-15. https://CRAN.R-project.org/package=rpart.
26 Thit, A., M.H. Sandgaard, J. Sturve, C. Mouneyrac, A. Baun and H. Selck. 2021. Influence of aging on bioaccumulation and toxicity of copper oxide nanoparticles and dissolved copper in the sediment-dwelling oligochaete Tubifex tubifex: A long-term study using a stable copper isotope. Frontiers in Toxicology 3.
27 Wilt, F.H. and N.K. Wessells, editors. 1967. Methods in Developmental Biology. Thomas Y. Crowell Co., New York.