• Title/Summary/Keyword: Toxic zinc

Search Result 98, Processing Time 0.024 seconds

Investigation of Heavy Metal Contents in Ganoderma lucidum(Fr.) Karst (영지버섯중의 중금속 함량)

  • 하영득;이인선
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.2
    • /
    • pp.187-193
    • /
    • 1990
  • Ganoderma lucidum has been widely used not only as ingredients in herbal medicine but also in pharmacological soft drinks. The author collected for analysis of content of 8 kinds of heavy metal(Cd, pb, Hg, Cu, Mn, Fe, As) in soil and cluture soil in an around the Taegu area including Sang Ju, Non Gong, Keum Ho, and Weol Bae. THe toxic content in Gaoderma lucidum showed relatively low level as in cadmium lead mercury arsenic : 0.8-0.13ppm 0.17-1.43ppm 0.02-0.32ppm 0.01-0.19ppm respectively : in copper mangenese zinc and iron : 0.93-4.29ppm, 0.37-2.18ppm 1.02-1.65ppm, 4.57-11.04ppm those grown in soil showed higher percentages of content than those grown on logs in lead copper zinc and iron by 43.2% 68.6%, 20.3% and 43.2% respectively. The content of heavy metals in those grown in soil and culture soil tended to be higher in the areas near factories of industrial complexes especially in manganese and iron. The content of heavy metals in soil and culture soil appeared lower than the mean values of Korean Soil. No interrelationship was found in the content of heavy metals between those of Ganoderma lucidum grown on logs and those grown in soil. In case of pot cultivation however the mushroom spawns are grown originally in soil which seems to influence the degree of content of heavy metals of media.

  • PDF

Comparison of Toxic Effects of Mercury, Copper and Zinc on Photosystem II of Barley Cholroplasts (보리 엽록체의 광계 II에서 수은, 구리 및 아연의 저해효과 비교)

  • 전현식
    • Journal of Plant Biology
    • /
    • v.36 no.3
    • /
    • pp.195-201
    • /
    • 1993
  • The room temperature fluorescence induction of chloroplasts was utilized as a probe to locate the site of inhibition by mercury, copper and zinc on PS II by mercury. Inhibitory effect of Hg2+ on electron transport activity was notable as compared with Cu2+ and Zn2+. At concentrations of HgCl2 over 50 $\mu$M, activities of PS II and whole-chain electron transport decreased more than 70%, while that of PS I decreased about 10~30%. This suggests that PS II is more susceptible to Hg2+ than PS I is. In the presence of diphenylcarbazide (DPC), 50 $\mu$M HgCl2 inhibited the reduction of dichlorophenolindophenol (DCPIP) about 50%. Addition of heavy metals induced marked decrease in maximal variable fluorescence/initial fluorescence [(Fv)m/Fo], but no changes in Fo. With various concentrations of heavy metals, changes of chlorophyll a fluorescence emitted by PS II showed gradual decrease in photochemical quenching (qQ), which indicates an increase in reduced state of electron acceptor, QA. Especially, the addition of HgCl2 caused a notable decrease of qQ. In the presence of 50 $\mu$M CuCl2, energy-depended quenching (qE) was completely reduced, whereas in the presence of 50 $\mu$M CuCl2 and ZnCl2 it was still remained. The above results are discussed on the effects of mercury in relation to water-splitting system and plastoquinone (PQ) shuttle system.

  • PDF

Interactive Toxic Effects of Heavy Metals and Diesel on Vibrio fischeri (발광박테리아(Vibrio fischeri)에 대한 중금속 및 디젤의 혼합 독성 영향)

  • Jung, Hyun;Park, Sookhyun;Hwang, Yu Sik
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.403-408
    • /
    • 2014
  • The toxicity of heavy metals (Zn, Pb) and diesel, in single and binary solution was investigated using the photobacterium Vibrio fischeri (Microtox test) as a test organism. In this experiment, the concentration of water soluble fraction of diesel was based on the total petroleum hydrocarbon (TPH). The toxicity of each single compound showed the following $EC_{50}$ (15min): Zn 1.90 mg/L, Pb 0.31 mg/L, TPH 2.09 mg/L. The observed toxicity of binary mixtures increased, depending on the concentration of the mixed substance. The effects were defined as synergistic, antagonistic, or additive, in accordance with the sign of difference between the predicted and observed toxicity at binary mixtures. The interactive effects between zinc and lead were synergistic, on the other hand, antagonistic and additive effects were found in each metal and TPH mixtures on the bioluminescence of V. fischeri.

Cadmium Toxicity Decreased by Selenium Induced Metallothionein in the Organs of Rat. (Selenium에 의한 흰쥐의 장기내 Metallothionein변화와 Cadmium에 미치는 영향)

  • 김정현;이재형;기노석;고대하
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.95-104
    • /
    • 1992
  • The influence of selenium to several toxic effects of cadmum, including lethality has been shown following pretreatment with cadmium, zinc and seleniurm Five groups of rats, each consisting of 16 rats, were studied and each group was divided into four subgroups, 4 rats for each subgroup. After subcutaneous pretreatment during 5 days with saline, CdCl$_{2}$ (0.5mg/kg, ZnCl$_{2}$ (13.0mg/kg) and $Na_{2}SeO_{3}$(1.0mg/kg), rats were given intraperitioneal administration of various dosage of or cadium of cadmium and selenium. After giving the challenge dose, cadmium and metallothionein(MT) concentrations were determined in liver and kidney The concentration of cadmium in liver and kideny increased proportionally to the increase of challenge dosage. The simultaneous administration of cadmium and selenium significantly more decrease cadmium concentrations in liver and kidney than those of the administration of cadmium only. However, MT concentrations in liver and kideny were increased by the pretreatment of cacmium, zinc and selenium. Our results suggest that increasing cadmium concentrations, gradully accumulating in the tissues of liver and kidney as a result of the pretreatment, served to induced the synthesis of MT, thus making them resistant to the challenge from cadmium.

  • PDF

A Molecular Biotechnology For Removal of Toxic Heavy Metals

  • Bang Sang-Weon;Clark Douglas S.;Keasling Jay D.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.128-135
    • /
    • 2000
  • The thiosulfate reductase gene (PhsABC) from Salmonella typhimurium was expressed in Escherichia coli in order to produce sulfide from inorganic thiosulfate and precipitate metals as metal sulfide complexes. A 5.1-kb DNA fragment containing the native phsABC and a 3.7-kb DNA fragment, excluding putative promoter and regulatory regions were inserted into expression vectors pTrc99A and pJB866, respectively. Upon expression of phsABC, E. coli DH5$\alpha$ harboring the phsABC constructs showed higher thiosulfate reductase activity and produced significantly more sulfide than the control strain (E. coli DH5$\alpha$) under both aerobic and anaerobic conditions. Among the four constructs, E. coli DH5$\alpha$ harboring pSB74 produced the highest level of thiosulfate reductase and removed most of heavy metals from solution under anaerobic conditions. In a mixture of 100 $\mu$M each of cadmium, lead, and zinc, the strain could remove $99\%$ of the total metals from solution within 10 hours. Cadmium was removed first, lead second, and zinc last. In contrast, a negative control did not produce any measurable sulfide and removed very little metals from solution. These results have important implications for removal of metals from wastewater contaminated with several metals.

  • PDF

Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie (차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향)

  • Jo, Jeonggeun;Kim, Jaekook
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

Toxicity Assessment of Heavy Metals in Shihwa Lake and Its Tributaries using the Algae (조류를 이용한 시화호 및 시화호 유입수 내 중금속 물질의 독성 평가 연구)

  • Woo, Minhui;Lee, Gyuyoung;Kim, Jihye;Lim, Jihyun;Lee, Yong-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • This research investigates how using algae as an ecotoxicological test species is easier than using daphnia for identifying toxic causative substances. From the results of the ecotoxicity measurements on the Shihwa lake and its tributaries, heavy metals were considered as one of major factors in causing toxicity. The algae ecotoxicity value was 9.6 while the daphnia ecotoxicity value was 0.8 in the Jeongwang stream. By using algae as the test species, we could identify the toxicity that causes heavy metals which might otherwise have been missed with only daphnia. The results from the EDTA addition test showed that zinc and copper were the main toxic causative substances in the Jeongwang stream and Gunja stream.

Toxicometallomics of Cadmium, Manganese and Arsenic with Special Reference to the Roles of Metal Transporters

  • Himeno, Seiichiro;Sumi, Daigo;Fujishiro, Hitomi
    • Toxicological Research
    • /
    • v.35 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • The transport systems for metals play crucial roles in both the physiological functions of essential metals and the toxic effects of hazardous metals in mammals and plants. In mammalian cells, Zn transporters such as ZIP8 and ZIP14 have been found to function as the transporters for Mn(II) and Cd(II), contributing to the maintenance of Mn homeostasis and metallothionein-independent transports of Cd, respectively. In rice, the Mn transporter OsNramp5 expressed in the root is used for the uptake of Cd from the soil. Japan began to cultivate OsNramp5 mutant rice, which was found to accumulate little Cd, to prevent Cd accumulation. Inorganic trivalent arsenic (As(III)) is absorbed into mammalian cells via aquaglyceroporin, a water and glycerol channel. The ortholog of aquaporin in rice, OsLsi1, was found to be an Si transporter expressed in rice root, and is responsible for the absorption of soil As(III) into the root. Since rice is a hyperaccumulator of Si, higher amounts of As(III) are incorporated into rice compared to other plants. Thus, the transporters of essential metals are also utilized to incorporate toxic metals in both mammals and plants, and understanding the mechanisms of metal transports is important for the development of mitigation strategies against food contamination.

Effective Use of Orange Juice Residue for Removing Heavy and Radioactive Metals from Environments

  • Inoue, Katsutoshi;Zhu, Yushan;Ghimire, Kedar-Nath;Yano, Masayuki;Makino, Kenjiro;Miyajima, Tohru
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.264-269
    • /
    • 2001
  • Large amounts of orange juice are produced in Japan every yea.. Accompanied by the production of orange juice, large amount of juice residues are also generated in nearly the same amounts with juice. Although, at present, some of these residues are marketed as a feed for cattle after drying and mixing with lime, the marketing price is lower than its production cost and the difference is paid by the consumers as a part of the price of orange juice. In the present work, we developed new innovative use of orange juice residue, a biomass waste, as adsorption gel for removing toxic heavy metals such as lead. arsenic, selenium and so on as well as radioactive elements such as uranium and thorium from environments. The major components of orange juice residue are cellulose. hemicellulose and pectin, which are converted into pectic. acid, an acidic polysaccharide, by means of saponification with concentrated sodium hydroxide solution. In the previous work, we found that crosslinked pectic acid gel strongly an selectively adsorbs lead over other metals such as zinc an copper. On the other hand. it is well known that polysaccharides such as cellulose can be easily phosphorylated and that phosphorylated polysaccharides have high affinity to uranium and thorium as well as some trivalent metals such as ferric iron and aluminum. Taking account of the noticeable characteristics of these polysaccharides, 2 types of adsorption gels were prepared from orange juice residue: one is the gel which was prepared by saponificating the residue followed by crosslinking with epichlorohydrin and another is that prepared by crosslinking the residue followed by phosphorylation. The former gel exhibited excellent adsorptive separation behavior for lead away from zinc owing to high content of pectic acid while the latter gel exhibited that for uranium and thorium. Both types of adsorption gels exhibited high affinity to ferric iron, which enables selective and strong adsorption for some toxic oxo-anions of arsenic (V and III), . selenium and so on via iron loaded on these gels. These results demonstrate that biomass wastes such as orange juice residue can be effectively utilized fer the purpose of removing toxic heavy or radioactive metals existing in trace or small amounts in environments.

  • PDF

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF