• Title/Summary/Keyword: Toxic liquid

Search Result 202, Processing Time 0.025 seconds

A Synthesis process of ADN as Green Solid Oxidizer (친환경 고체산화제 ADN의 합성 공정)

  • Sul, Min-Jung;Shim, Jung-seob;Park, Young-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.978-983
    • /
    • 2017
  • Ammonium dinitramide(ADN) is currently under inder investigation as a replacement for ammonium perchlorate, both for environmental and toxicological reasons. Another promising application is ADN-based liquid monopropellant as a replacement for hydarzine, which is highly toxic and carcinogenic. Production of ADN is today normally performed via guanylurea dinitramide(GUDN) by reaction with potassium hydroxide to yiela potassium dinitramide(KDN). In a second reaction step, KDN is reacted with ammonium sulfate to give ADN. In our new improved process, ADN is synthesized from GUDN in one single reaction step. The simplified process improves purity, reduces the amount of by-products and allows production of ADN at a potentially lower cost, which is crucial to favour the use of ADN.

  • PDF

Recent Trends of Advanced Biosensors for Mycotoxin Analysis

  • Shim, Won-Bo
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.35-35
    • /
    • 2016
  • A mycotoxin is a toxic secondary metabolite produced by organisms of the fungus kingdom, commonly known as molds and has been widely contaminated in agricultural products such as grains and cereals. Many methods including high performance liquid chromatography (HPLC) and gas chromatography (GC) have already been proposed and reviewed for mycotoxins. These methods are either expensive or time-consuming due to the complication of sample preparation and pre-concentration before determination. In addition, both methods are unsuitable for the routine screening of large sample numbers. A biosensor is a fictive analytical device that combines a biological component with a physicochemical detector for the detection of an analyte. Biosensors represent a rapidly expanding field, at the present time, with an estimated 60% annual growth rate; the major impetus coming from the health-care industry but with some pressure from other areas, such as food safety and environmental monitoring. Antibodies and aptamers are bioreceptors which have been used in the development of biosensors. There are many kinds of antibodies and aptamers specific to mycotoxin, and antibody (or aptamer)-based biosensors have been successfully developed for the detection of mycotoxin. The biosensors permit the rapid, sensitive, simple, and on-site detection of a range of mycotoxins and can be an alternative method to traditional methods such as HPLC and GC. This presentation provides the development trends of biosensors to mycotoxins and their application to food and agricultural products.

  • PDF

Degradation of Trichloroethylene by a Growth-Arrested Pseudomonas putida

  • Hahm, Dae-Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.11-14
    • /
    • 1998
  • A toluene-oxidizing strain of Pseudomanas mendocina KR1 containing toluene-4-mono-oxygenase (TMO) completely degrades TCE with the addition of toluene as a co-substrate in aerobic condition. In order to construct in situ bioremediation system for TCE degradation without any growth-stimulating nutrients or toxic inducer such as toluene, we used the carbon-starvation promoter of Pseudomonas putida MK1 (Kim, Y. et al., J. bacteriol., 1995). Upon entry into the stationary phase due to the deprivation of nutrients, this promoter is strongly induced without further cell growth. The TMO gene cluster (4.5 kb) was spliced downstream of the carbon starvation promoter of Pseudomonas putida MK1, already cloned in pUC19. TMO under the carbon starvation promoter was not expressed in E. coli cells either in stationary phase or exponential phase. For TMO expression in Pseudomonas strains, tmo and carbon starvation promoter region were recloned into a modified broad-host range vector pMMB67HES which was made from pMMB67HE(8.9 kb) by deletion of tac promoter and lacIq (about 1.5 kb). Indigo was produced by TMO under the carbon starvation promoter in a Pseudomonas strain of post-exponential phase on M9 (0.2% glucose and 1mM indole) or LB. 18% of TCE was degraded in 14 hours after entering the stationary phase at the initial concentration of 6.6 ${\mu}$M in liquid phase.

  • PDF

Study on Sebsea Pipeline Thermal Expansion (해저송유관의 열팽창 고찰)

  • 조철희;홍성근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Nearshore and offshore pipelines are often applied to carry oil, gas, water and combined products. The thermal and pressure gradients of the fluid inside pipeline cause pipeline expansion. This expansion produces stress to connecting structures with pipeline. Should this stress exceeds the yield strength of connecting components or the allowable displacement of the system, a damage can occur. As most pipelines contain hazardous and toxic fluids, the damage usually leads to fatal accidents involving great economic loss as well. Even subsea pipelines can be easily applied to transport liquid type fluid without time and space constraint, they should be designed and maintained carefully to be functional safely during design lifetime. In this paper, various theories estimating pipeline thermal expansion are investigated and the effects of pipe components to expansion are studied.

  • PDF

Optimized purification and characterization of expressed hMC4R-TM2

  • Park, Yu-Geun;Song, Jooyoung;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • Human melanocortin-4 receptor (hMC4R) among MC-Rs, expressed in the brain, is in charge of the control on energy homeostasis and food intake. The structure and function of human MC4R have been studied to understand their essential function and roles. To investigate the structure and function, it is necessary to prepare sufficient amounts of proteins. However, their expression and purification is demanding and time-consuming due to their innate insoluble and toxic properties. The heterozygous mutations of hMC4R, exchange of Asp 90 to Asn located in second transmembrane, cause severe obesity in human. To obtain purified hMC4R wt-TM2 for structural studies, it was first over-expressed and purified by fast protein liquid chromatography (FPLC) and then solution NMR studies were performed to get high-resolution spectra. In here, we established optimized purification scheme to get more purified target peptide.

Preliminary Study on Reaction Mechanism for Energy Generation using Hydride and Hydrogen Peroxide (수소화물과 과산화수소를 적용한 에너지 생성 메커니즘 연구)

  • Seo, Seong-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.300-303
    • /
    • 2012
  • Global warming has been a serious problem due to excessive emissions of carbon dioxide from the increase of energy consumption. The present study investigates an energy generation mechanism that does not produce carbon dioxide and oxides of nitrogen. A reaction mechanism including sodium borohydride and hydrogen peroxide has been introduced and as a result, thermal energy can be generated from combustion of hydrogen with oxygen. Sodium borohydride dissolved in water reacting with liquid hydrogen peroxide may reveal maximum adiabatic reaction temperature of 1795 K at a mixture ratio of 0.89.

  • PDF

Interaction of industrial effluents and bentonite: a comparative study of their physico-chemical and geotechnical characteristics

  • Murugaiyan, V.;Saravanane, R.;Sundararajan, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.291-306
    • /
    • 2009
  • One-dimensional soil-column studies were carried out to understand the interaction of three industrial effluents namely amino acid ('highly acidic'), surfactant ('highly organic') and pharmaceutical ('organic and toxic') on the physicochemical behavior, index properties and shear strength of bentonite due to artificial contamination extending to nearly 300 days. Changes in inorganic and organic pollutants present in the effluents due to the interaction of the above effluents and soil were assessed to understand the physico-chemical behaviour. Batch and continuous modes of operation, 8 hrs and 16 hrs Hydraulic Retention Time [HRT] and 25%, 50% concentrations of effluents, were the parameters considered. Amino acid, surfactant and pharmaceutical effluents have shown a high variation in pH (7 to 8) after artificial contamination on bentonite that is their original characteristics of the above effluents have been completely reversed. Further, it is found that the shear strength of bentonite has reduced by about 20%, and with respect to liquid limit and plastic limit shows an increasing trend with time within the period of contamination.

A study on the application of water safety plans for the hazard risk management of tap water (수돗물 위해요소 리스크 관리를 위한 물안전계획 적용 연구)

  • Kim, Jinkeun;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.259-268
    • /
    • 2019
  • One of the most effective methods to consistently ensure the safety of a tap water supply can be achieved by application of a comprehensive risk assessment and risk management approach for drinking water supply systems. This approach can be termed water safety plans(WSP) which recommended by WHO(world health organization) and IWA(international water association). For the introduction of WSP into Korea, 150 hazards were identified all steps in drinking water supply from catchment to consumer and risk assessment tool based on frequency and consequence of hazards were developed. Then, developed risk assessment tool by this research was implemented at a water treatment plant($Q=25,000m^3/d$) to verify its applicability, and several amendments were recommended; classification of water source should be changed from groundwater to stream to strengthen water quality monitoring contaminants and frequencies; installation of aquarium to monitor intrusion of toxic substances into raw water; relocation or new installation on-line water quality analyzers for efficient water quality monitoring; change of chlorination chemical from solid phase($Ca(OCl)_2$) to liquid phase(NaOCl) to improve soundness of chlorination. It was also meaningful to propose hazards and risk assessment tool appropriate for Korea drinking water supply systems through this research which has been inconsistent among water treatment authorities.

The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis

  • Lu, Kai;Zhang, Min;Yang, Ran;Zhang, Min;Guo, Qinjun;Baek, Kwang-Hyun;Xu, Houjuan
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.91-99
    • /
    • 2019
  • Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ${\Delta}AbSte7$ mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ${\Delta}AbSte7$ mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, ${\beta}$-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

A Study on the MSATs (Mobile source Air Toxics) Contribution from MDTs (Medium-duty Trucks) Exhaust Emission (중형트럭에서 발생하는 배출가스 중 미량유해물질 발생 특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.21-26
    • /
    • 2019
  • In Korea, Medium-duty trucks are classified into GVW (Gross Vehicle Weight) 3.5~10tons. MDTs are mostly used for logistics or delivery between regions. There have been studied on diesel fuel vehicles for SUVs(Sports Utility Vehicle) or light-duty trucks. But MDTs have been not studied. Therefore, this study have been used MDTs for characteristic exhaust emission. Test was carried out using the certification test mode (NEDC, New European Driving cycle) and the NIER mode in chassis dynamometer of the MDTs. And emission gas was analyzed for PN (Particulate Number), PN size distribution and aldehydes, VOCs (Volatile Organic Compounds), PAHs (Polycyclic Aromatic Hydrocarbons). This paper concluded that EURO-IV trucks produced more MSATs than EURO V trucks. Depending on the engine temperature, more MSATs were generated in cold temperature than in the hot start operation. However, the driving speed, the opposite results was obtained.