• Title/Summary/Keyword: Toxic Plants

Search Result 342, Processing Time 0.024 seconds

Extraction and effect of whitening agents from chinese plants (중국산 천연물에서 미백성분의 추출 및 효과)

  • Jin, Yinzhe;Li, Guanghua;Ahn, So Young;Kim, Eun-Ki;Row, Kyung Ho
    • Analytical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2006
  • In this work, extraction and purification of the possible whitening agents from the Chinese plants; Chrysanthemum morifolium Ramat (xizang cai ju hua), Rhodiola sachalinensis, and Terminalia chebula Retzius have been described. The chopped leaves of Chrysanthemum morifolium Ramat and Terminalia chebula Retzius were added to water and ethyl ether, respectively. Components were separated on a GS310 column ($21.5{\times}500mm$ i.d., $10-15{\mu}m$) and concentrated into four or three portions. The chopped leaves of Rhodiola salientness were added to methanol and separated and concentrated on a column ($C_{18}$ column, $3.9^{\circ}$�F8;300 mm i.d., $15{\mu}m$) into two parts. The whitening effects of extracts were examined by in-vitro melanin production assay, in melana and B16 cells at a concentration of $10{\mu}g/ml$. The ethyl acetate layer of Chrysanthemum morifolium Ramat showed 92% melanin inhibitory at $200{\mu}g/ml$, the extract of Rhodiola sachalinensis showed a whitening effect of about 60% melanin inhibitory, which was more efficient than the whitening effect of arbutin (45.6%). The methanol extract of Terminalia chebula Retzius inhibited melanin expression by 90% at $100{\mu}g/ml$; however, it was toxic to B16 melanoma cells.

Response of Mulberry Brown Leaf Spot Fungus Myrothecium roridum to Different Plant Extracts

  • Chattopadhyay, S.;Institute, Traning;Majil, M.D.;Pratheesshkumar;Das, K.K.;Saratchandra, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.2
    • /
    • pp.183-188
    • /
    • 2002
  • Anti-fungal potential of 5 plant extracts viz., Eucalyptus citriodora, Allium sativum, Cassia sophera, Chromolaena odorata and Datura metel on the growth of mulberry brown leaf spot pathogen Myrothecium roridum were examined. Except fur the aqueous extract of Allium bulb, ethanolic leaf extract of all other plants more efficiently reduced the colony growth of the fungus on potato-dextrose-agar, Of which, Allium and Eucalyptus extracts were more effective. Initiation of radial growth of M. roridum on solid media was deferred maximum 6 days by ethanolic Eucalyptus extract and 4 days by aqueous Allium extract at $0.4 mg.ml^{-1}$. In the liquid media amended with Eucalyptus extract ($0.4 mg.ml^{-1}$) complete inhibition of sporulation was noticed upto 8 days, and initial inhibition of mycelial bio-mass generation was considerably diminished with time and reduction was 1.3 fold 14 days after application. While, complete inhibition of mycelial growth for 6-14 days was recorded with $\geq$0.1 mg.ml$^{-1}$ commercial eucalyptus oil. However, rejuvenation of growth appeared when fungus was re-inoculated in fresh media. Post-inoculate application of different doses Of Eucalyptus and Allium extracts significantly (p < 0.05) reduced the disease severity in pot-ted mulberry. However, persistence of the effect up to 28 days was apparent at $\geq$ 1.0 mg.ml$^{-1}$ and effectively was on par with carbendazim (1 mg.ml$^{-1}$ ). Almost equal control ability of 1.0 mg.ml$^{-1}$ Eucalyptus extracts can be achieved by ca. 10 times lowered dose of commercial eucalyptus oil. It seems, the toxic principle of E. citrodora to M. roridum is fungistatic in nature and may have essential oil based origin.

In Vitro Antiviral Activity of Cinnamomum cassia and Its Nanoparticles Against H7N3 Influenza A Virus

  • Fatima, Munazza;Sadaf Zaidi, Najam-us-Sahar;Amraiz, Deeba;Afzal, Farhan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.151-159
    • /
    • 2016
  • Nanoparticles have wide-scale applications in various areas, including medicine, chemistry, electronics, and energy generation. Several physical, biological, and chemical methods have been used for synthesis of silver nanoparticles. Green synthesis of silver nanoparticles using plants provide advantages over other methods as it is easy, efficient, and eco-friendly. Nanoparticles have been extensively studied as potential antimicrobials to target pathogenic and multidrug-resistant microorganisms. Their applications recently extended to development of antivirals to inhibit viral infections. In this study, we synthesized silver nanoparticles using Cinnamomum cassia (Cinnamon) and evaluated their activity against highly pathogenic avian influenza virus subtype H7N3. The synthesized nanoparticles were characterized using UVVis absorption spectroscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Cinnamon bark extract and its nanoparticles were tested against H7N3 influenza A virus in Vero cells and the viability of cells was determined by tetrazolium dye (MTT) assay. The silver nanoparticles derived from Cinnamon extract enhanced the antiviral activity and were found to be effective in both treatments, when incubated with the virus prior to infection and introduced to cells after infection. In order to establish the safety profile, Cinnamon and its corresponding nanoparticles were tested for their cytotoxic effects in Vero cells. The tested concentrations of extract and nanoparticles (up to 500 μg/ml) were found non-toxic to Vero cells. The biosynthesized nanoparticles may, hence, be a promising approach to provide treatment against influenza virus infections.

Toxic Effects of Heavy Metals on the Growth and Phosphorus Removal Efficiency of Phosphorus Accumulating Microorganisms (PAOs)

  • Sin, Da Hee;Kim, Deok Hyeon;Kim, Jong In;Lee, Moon-Soon;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.673-680
    • /
    • 2013
  • Phosphorus accumulating microorganisms (PAOs) are influenced by various environmental factors and heavy metals. This study was performed to evaluate the effects of the selected heavy metals on the growth and phosphorus removal capacity of Bacillus sp. 3434 BRRJ, Pseudomonas aerunogisa, and Bacillus Subtilis, well known as PAOs. The heavy metals used in this study included Cu, Cd, As, and Zn. The $IC_{50}$ (median inhibition concentration) values of Bacillus sp. 3434 BRRJ for the Cu, Cd, As, and Zn were 8.07 mg $L^{-1}$, 0.18 mg $L^{-1}$, 73.62 mg $L^{-1}$ and 0.25 mg $L^{-1}$, respectively. The $IC_{50}$ values of Pseudomonas aerunogisa for the Cu, Cd, As, and Zn were 4.45 mg $L^{-1}$, 0.16 mg $L^{-1}$, 18.51 mg $L^{-1}$ and 2.34 mg $L^{-1}$, respectively. The $IC_{50}$ values of Bacillus Subtilis for the Cu, Cd, As, and Zn were 3.81 mg $L^{-1}$, 0.18 mg $L^{-1}$, 11.31 mg $L^{-1}$ and 0.47 mg $L^{-1}$, respectively. The phosphorus removal efficiencies of the three bacteria, Bacillus sp. 3434 BRRJ, Pseudomonas aerunogisa, and Bacillus subtilis were 93.12%, 71.81%, and 65.31%, respectively. Based on the results of the three PAOs obtained from the study, it appears that Bacillus sp. 3434BRRJ may have the best results in terms of their growth rate and P removal efficiencies.

Effects on Gene Expressions in the Rat Liver of Aconitine and Aconitum Species. (부자류 및 Aconitine이 흰쥐 간 내 유전자발현에 미치는 영향)

  • Lee, Jeong-Ho;Han, Sang-Yong;Kim, Hyun-Ju;Park, Hye-Jung;Kim, Yun-Kyung
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.1-12
    • /
    • 2007
  • Objectives : Aconitine is one of the toxic components of aconitum species. This study was carried out to evaluate gene expressions of herbal prescriptions containg aconitum species and oriental medicinal plants of aconitum species. Methods : We have measured gene expressions in the liver of aconitine, Aconitum carmichaeli DEBX., Aconitum ciliare DC. Yong Ho Whan using Sprague-Dawley rat. Gene expression in rat liver has been analyzed using codelink 10k microarray. Results : 1. Genes up-regulated over than 4 fold were 118 and down-regulated less than 4 fold were 91 in aconitine 50 ${\mu}g/kg/day$ over control. 2. Genes up-regulated of over than 4 fold were 124 and down-regulated less than 4 fold were 98 in Aconitum ciliare DC. 4g/kg/day and 169 of over than 4 fold, and 110 of less than 4 fold for Aconitum carmichaeli DEBX. 4g/kg/day, respectively. 3. Regulated genes in treatment group of Aconitum carmichaeli DEBX, Aconitum ciliare DC. and aconitine was only 2 different genes, Sulfotransferase family 4A, member 1 and Lin-7 homolog b (C. elegans). Conclusions : Gene expression profiles in liver were different among aconitine, Aconitum carmichaeli DEBX., Aconitum ciliare DC. and herbal prescription YongHo-whan. Furthermore, we can find many new genes related with effects of aconitum species.

  • PDF

Review on the Selenuium, an Essential Trace Mineral (기능성 미량원소 Selenium 화합물에 대한 고찰)

  • 이춘기;남중현;김재철;구본철;강문석;박광근
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.13-23
    • /
    • 2003
  • The trace mineral, selenium (Se), is an essential nutrient of fundamental importance to human health. It is also very toxic and can cause Se poisoning (selenosis) in human and animals when its intake exceeds a suitable amount. Se functions within mammalian systems primarily in the form of solenoprotein. About 35 selenoproteins have been identified, though many have not yet been fully elucidated. Selenoproteins contain Se as selenocyseine (Sec) and perform variety of structural and enzymic roles; the enzymic roles are best-known as the antioxidants for hydrogen peroxides and lipid peroxides, and the catalysts for production of activity thyroid hormone. Glutathione peroxidases ($\textrm{GP}_X$) among the selenoproteins prevent the generation of free radicals and decrease the risk of oxidative damage to tissues, as does thioredoxin reductase (TR). TR also provides reducing power for several biochemical processes. Selenoproteins P and W are involved with oxidant defense in plasma and muscle, respectively, A selenoprotein is also required for sperm motility and may reduce the risk of miscarriage. Some epidemiological studies have revealed an inverse correlation between Se status and cardiovascular disease, and there is considerable evidence 1mm population com-parison data and animal studies that Se is anticarcinogenic. It is also suggested that Se should be needed for the proper functioning of the immune system, and appear to be a key nutrient in counteracting the development of virulence and inhibiting HIV progression to AIDS. As research continues, the role of selenium in the etiology of chronic diseases like appropriate medical nutrition therapy can be delivered and its effectiveness assessed. Se status in individuals is affected by diet and the availability of the Se. The Se content of plants is affected by the content and availability of the element in the soil in which they are grown, and so greatly varies from country to country, while the Se composition of meat reflects the feeding patterns of livestock. This paper provides an overview on Se as an essential trace mineral for human.

Analysis of formaldehyde using DNPH cartridge/LC-MS in the Ban-Woll.Shi-Hwa Industrial Complex (DNPH cartridge/LC-MS 방법에 의한 반월.시화산업단지의 폼알데하이드 분석에 관한 연구)

  • Cho Deok-Hee;Song Il-Seok;Kim In-Gu;Kim Woong-Soo;Kim Jong-Bo;Kim Tae-Hyun;Hwang Sun-Min;Nam Woo-Kyong
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.35-43
    • /
    • 2006
  • Formaldehyde is important because of their irritant and toxic properties, mutagenicity and carcinogenicity. In this study, liquid chromatography-mass spectrometry (LC-MS) is used for the analysis of formaldehyde after derivatization with 2,4-dinitrophenylhydrazine (DNPH) cartridge. Analytical parameters such as linearity, repeatability and minimum detection limit were evaluated. The linearity ($r^2$) was 0.9997 when analyte concentration ranges from 25 to $200{\mu}g/l$. The relative standard deviation (%RSD) was 1.25 % for concentration of $200{\mu}g/l$. The minimum detection limit (MDL) was 0.73 ppbv. It was shown that LC-MS method has a great potential for formaldehyde analysis. The results of formaldehyde from the survey of Ban-Woll and Shi-Hwa Industrial Complex samples, the highest level was 6.20, 3.93 ppb, respectively. The highest emission level of formaldehyde at chemical plants in the Ban-Woll' Shi-Hwa Industrial Complex was 5421.25 ppb.

Toxicity characteristics of sewage treatment effluents and potential contribution of micropollutant residuals

  • Kim, Younghee;Farnazo, Danvir Mark
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.318-327
    • /
    • 2017
  • Background: A typical sewage treatment plant is designed for organic and nutrient removal from municipal sewage water and not targeted to eliminate micropollutants such as pesticides, pharmaceuticals, and nano-sized metals which become a big concern for sustainable human and ecological system and are mainly discharged from sewage treatment plant. Therefore, despite contaminant removal by wastewater treatment processes, there are still remaining environmental risks by untreated pollutants in STP (sewage treatment plant) effluents. This study performed aquatic toxicity tests of raw wastewater and treated effluents in two sewage treatment plants to evaluate toxicity reduction by wastewater treatment process and analyze concentration of contaminants to reveal potential toxic factors in STP effluents. Methods: Water samples were collected from each treatment steps of two STPs, and acute and chronic toxicity tests were conducted following USEPA (United States Environmental Protection Agency) and OECD (Organization for Economic Cooperation and Development) guidelines. Endpoints were immobility for mortality and reproduction effect for estrogenicity. Results: Acute $EC_{50}s$ (median effective concentration) of influents for Seungki (SK) and Jungnang (JN) STPs are $54.13{\pm}32.64%$ and $30.38{\pm}24.96%$, respectively, and reduced to $96.49{\pm}7.84%$ and 100%. Acute toxicity reduction was clearly correlated with SS (suspended solids) concentration because of filter feeding characteristics of test organisms. Chronic toxicity tests revealed that lethal effect was reduced and low concentration of influents showed higher number of neonates. However, toxicity reduction was not related to nutrient removal. Fecundity effect positively increased in treated wastewater compared to that in raw wastewater, and no significant differences were observed compared to the control group in JN final effluent implying potential effects of estrogenic compounds in the STP effluents. Conclusions: Conventional wastewater treatment process reduced some organics and nutritional compounds from wastewater, and it results in toxicity reduction in lethal effect and positive reproductive effect but not showing correlation. Unknown estrogenic compounds could be a reason causing the increase of brood size. This study suggests that pharmaceutical residues and nanoparticles in STP effluents are one of the major micropollutants and underline as one of estrogenic effect factors.

OsATG10b, an Autophagosome Component, Is Needed for Cell Survival against Oxidative Stresses in Rice

  • Shin, Jun-Hye;Yoshimoto, Kohki;Ohsumi, Yoshinori;Jeon, Jong-seong;An, Gynheung
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • Autophagy degrades toxic materials and old organelles, and recycles nutrients in eukaryotic cells. Whereas the studies on autophagy have been reported in other eukaryotic cells, its functioning in plants has not been well elucidated. We analyzed the roles of OsATG10 genes, which are autophagy-related. Two rice ATG10 genes - OsATG10a and OsATG10b - share significant sequence homology (about 75%), and were ubiquitously expressed in all organs examined here. GUS assay indicated that OsATG10b was highly expressed in the mesophyll cells and vascular tissue of younger leaves, but its level of expression decreased in older leaves. We identified T-DNA insertional mutants in that gene. Those osatg10b mutants were sensitive to treatments with high salt and methyl viologen (MV). Monodansylcadaverine-staining experiments showed that the number of autophagosomes was significantly decreased in the mutants compared with the WT. Furthermore, the amount of oxidized proteins increased in MV-treated mutant seedlings. These results demonstrate that OsATG10b plays an important role in the survival of rice cells against oxidative stresses.

Methods for sampling and analysis of marine microalgae in ship ballast tanks: a case study from Tampa Bay, Florida, USA

  • Garrett, Matthew J.;Wolny, Jennifer L.;Williams, B. James;Dirks, Michael D.;Brame, Julie A.;Richardson, R. William
    • ALGAE
    • /
    • v.26 no.2
    • /
    • pp.181-192
    • /
    • 2011
  • Ballasting and deballasting of shipping vessels in foreign ports have been reported worldwide as a vector of introduction of non-native aquatic plants and animals. Recently, attention has turned to ballast water as a factor in the global increase of harmful algal blooms (HABs). Many species of microalgae, including harmful dinoflagellate species, can remain viable for months in dormant benthic stages (cysts) in ballast sediments. Over a period of four years, we surveyed ballast water and sediment of ships docked in two ports of Tampa Bay, Florida, USA. Sampling conditions encountered while sampling ballast water and sediments were vastly different between vessels. Since no single sample collection protocol could be applied, existing methods for sampling ballast were modified and new methods created to reduce time and labor necessary for the collection of high-quality, qualitative samples. Five methods were refined or developed, including one that allowed for a directed intake of water and sediments. From 63 samples, 1,633 dinoflagellate cysts and cyst-like cells were recovered. A native, cyst-forming, harmful dinoflagellate, Alexandrium balechii (Steidinger) F. J. R. Taylor, was collected, isolated, and cultured from the same vessel six months apart, indicating that ships exchanging ballast water in Tampa Bay have the potential to transport HAB species to other ports with similar ecologies, exposing them to non-native, potentially toxic blooms.