• 제목/요약/키워드: Touch-sensor

검색결과 181건 처리시간 0.029초

A Compact Low-Power Shunt Proximity Touch Sensor and Readout for Haptic Function

  • Lee, Yong-Min;Lee, Kye-Shin;Jeong, Taikyeong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권3호
    • /
    • pp.380-386
    • /
    • 2016
  • This paper presents a compact and low-power on-chip touch sensor and readout circuit using shunt proximity touch sensor and its design scheme. In the proposed touch sensor readout circuit, the touch panel condition depending on the proximity of the finger is directly converted into the corresponding voltage level without additional signal conditioning procedures. Furthermore, the additional circuitry including the comparator and the flip-flop does not consume any static current, which leads to a low-power design scheme. A new prototype touch sensor readout integrated circuit was fabricated using complementally metal oxide silicon (CMOS) $0.18{\mu}m$ technology with core area of $0.032mm^2$ and total current of $125{\mu}A$. Our measurement result shows that an actual 10.4 inches capacitive type touch screen panel (TSP) can detect the finger size from 0 to 1.52 mm, sharply.

A New Capacitive Sensing Circuit using Modified Charge Transfer Scheme

  • Yeo, Hyeop-Goo
    • Journal of information and communication convergence engineering
    • /
    • 제9권1호
    • /
    • pp.78-82
    • /
    • 2011
  • This paper proposes a new circuit for capacitive sensing based on Dickson's charge pump. The proposed touch sensing circuit includes three stages of NMOS diodes and capacitors for charge transfer. The proposed circuit which has a simplified capacitive touch sensor model has been analyzed and simulated by Spectre using Magna EDMOS technology. Looking from the simulation results, the proposed circuit can effectively be used as a capacitive touch sensing circuit. Moreover, a simple structure can provide maximum flexibility for making a digitally-controlled touch sensor driver with lowpower operations.

Multi-point Flexible Touch Sensor Based on Capacitor Structure Using Thin Copper-Plated Polyimide Film for Textile Applications

  • Lee, Junheon;Kim, Taekyeong
    • 한국염색가공학회지
    • /
    • 제31권2호
    • /
    • pp.65-76
    • /
    • 2019
  • A multi-point touch input sensor having different sizes or different capacitance touch points connected by only one pair of signal transmission lines was fabricated using a polyimide film coated with a thin copper plate. The capacitance increases with the decrease in the number of sheets of fabric spacers placed between the two sheets of the polyimide film. Therefore, the touch input sensor could be manufactured without fabric spacers, which was possible by the action of the polyimide film as a dielectric material in the capacitor. On the multi-point touch sensor, higher capacitance was obtained when pressing wider-area touch points with 10mm to 25mm diameter on average. However, the capacitance of a system comprising two sheets of touch sensors was considerably low, causing a serious overlap of the capacitance values according to the data collected from the reliability test. Although the capacitance values could be increased by stacking several sheets of touch sensors, the overlap of data was still observed. After reducing the size of all touch points to 10mm and stacking up to eight sheets of sensors, reliable and consistent capacitance data was obtained. Five different capacitance signals could be induced in the sensors by pushing touch points simultaneously.

Highly Sensitive and Transparent Touch Sensor by a Double Structure of Single Layer Graphene

  • Kim, Youngjun;Jung, Hyojin;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.228.2-228.2
    • /
    • 2014
  • Characteristics of high Fermi velocity, high mechanical strength, and transparency offer tremendous advantages for using graphene as a promising transparent conducting material [1] in electronic devices. Although graphene is a prospective candidate for touch sensor with strong mechanical properties [2] and flexibility, only few investigations have been carried out in the field of sensor as a device form. In this study, we suggest ultra-highly sensitive and transparent graphene touch sensor fabricated by single layer graphenes. One of the graphene layers is formed in the top panel as a disconnected graphene beam transferred on PDMS, and the other of the graphene layer is formed with line-patterning on the bottom panel of triple structure PET/PI/SiO2. The touch sensor shows characteristics of flexible. Its transmittance is approximately 75% where transmittance of the top panel and the bottom panel are 86.3% and 87%, respectively, at 550 nm wavelength. Sheet resistance of each graphene layer is estimated as low as $971{\Omega}/sq$. The results show that the conductance change rate (${\Delta}C/C0$) is $8{\times}105$ which depicts ultra-high sensitivity. Moreover, reliability characteristic confirms consistent behavior up to a 100-cycle test.

  • PDF

텍스타일 터치센서를 활용한 스마트폰 제어 기능 재킷 개발 (Development of Smartphone Control Jacket Using Textile Touch Sensor)

  • 박진희;김지선;김주용
    • 패션비즈니스
    • /
    • 제24권5호
    • /
    • pp.140-157
    • /
    • 2020
  • The purpose of this study is to develop three functions for smartphones and PCs using a textile touch sensor in an everyday sports jacket and to present their usefulness; to this end, we have developed a mutual capacitive textile touch sensor and corresponding structure, and we have implemented three functions into a textile touch sensor jacket, of which we also conducted a usability evaluation. The jacket has a sensor on the wrist of the left sleeve and a device on the left arm. The sensor system can be divided into three main categories: a sensor acting as a switch, a circuit connecting the sensor and the device, and the device that acts as power control and system on/off. The functions are implemented in the texture touch sensor jacket in three modes: cell phone mode, music mode, and PPT presentation mode. We conducted an evaluation of each function in each mode, which indicated that all functions performed well without errors and that the switch had excellent operation for the number and intensity of touch. In terms of usability in a humid environment, the performance of touch functions was found to be equally implemented. In the temperature environment, neither high nor low temperatures caused issues with the functions. A wearing satisfaction assessment evaluated psychological satisfaction, clothing convenience, device convenience, device usability, and device effectiveness. This research jacket is thought to be desirable for the relatively bendable, flexible, and intimate sensor used on the clothing, and the circuit made of conductive fabric tape.

접촉형 변위센서를 이용한 LCD노광기용 스테이지 시스템 (Stage System for LCD Exposure Equipment Using Touch-type Displacement Sensor)

  • 임광국;서화일;조현찬;김광선;강흥석
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.7-10
    • /
    • 2007
  • In an effort to reduce weaknesses of existing laser displacement sensor-based system, a sensing device for distance and balance of mask-substrate gap using touch-type displacement sensor was suggested. The device suggested in this study is expected to solve the problems of prices and reflections, by means of a touch-type sensor. LCD exposure equipment stage system including suggested sensing device was realized to assess the characteristics of sensing the balance and gap between mask and substrate. It was verified that a touch-type displacement sensor-based device to adjust the balance and distance of mask-substrate gap suggested in this study can be applicable to LCD expose equipment in practice.

  • PDF

2개의 터치인식이 가능한 3D 터치패드 (Two-Point Touch Enabled 3D Touch Pad)

  • 이용민;한창호
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.578-583
    • /
    • 2017
  • 본 논문은 최근에 모바일 기기에 적용되고 있는 차세대 터치 기술로서 압력터치 센서를 이용한 3D 터치패드 기술에 관한 것이다. 3D터치 기술은 터치 위치 및 터치 압력을 동시에 검출할 수 있고 멀티터치 기능이 있어야 한다. 본 논문의 목적은 스트레인 게이지를 이용하여 압력터치 센서를 제작하고 2점을 동시에 터치 가능한 압력터치 패드 제작이다. 하드웨어 부분은 터치 인식 센서에 금속 박막형 스트레인 게이지를 이용하였고 각 스트레인 게이지 센서마다 휘스톤 브리지 회로로 미세한 터치 신호를 검출하였다. 또한, 터치 신호 증폭기를 사용하여 터치 신호를 증폭하고 마이크로프로세서를 통해 디지털 데이터로 변환하여 화면에 디스플레이하는 터치 인식 시스템을 만들었다. 소프트웨어 부분은 2점 동시터치가 가능하고 터치 압력에 따라 구별 가능한 터치 인식 알고리즘을 C언어로 제작하였다. 터치 강도와 터치 위치가 다른 두 개의 터치 신호를 동시에 검출하여 화면에 나타내는 실험을 성공적으로 수행하였다. 본 연구를 통해 스트레인 게이지를 이용한 터치 인식 방법으로 3D 터치패드의 응용 가능성을 확인하였다.

단일 a-InGaZnO 박막 트랜지스터를 이용한 정전용량 터치 화소 센서 회로 (Capacitive Touch Sensor Pixel Circuit with Single a-InGaZnO Thin Film Transistor)

  • 강인혜;황상호;백영조;문승재;배병성
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.133-138
    • /
    • 2019
  • The a-InGaZnO (a-IGZO) thin film transistor (TFT) has the advantages of larger mobility than that of amorphous silicon TFTs, acceptable reliability and uniformity over a large area, and low process cost. A capacitive-type touch sensor was studied with an a-IGZO TFT that can be used on the front side of a display due to its transparency. A capacitive sensor detects changes of capacitance between the surface of the finger and the sensor electrode. The capacitance varies according to the distance between the sensor plate and the touching or non-touching of the sensing electrode. A capacitive touch sensor using only one a-IGZO TFT was developed with the reduction of two bus lines, which made it easy to reduce the pixel pitch. The proposed sensor circuit maintained the amplification performance, which was investigated for various drive conditions.

A Low-Power Portable ECG Touch Sensor with Two Dry Metal Contact Electrodes

  • Yan, Long;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권4호
    • /
    • pp.300-308
    • /
    • 2010
  • This paper describes the development of a low-power electrocardiogram (ECG) touch sensor intended for the use with two dry metal electrodes. An equivalent ECG extraction circuit model encountered in a ground-free two-electrode configuration is investigated for an optimal sensor read-out circuit design criteria. From the equivalent circuit model, (1) maximum sensor resolution is derived based on the electrode's background thermal noise, which originates from high electrode-skin contact impedance, together with the input referred noise of instrumentation amplifier (IA), (2) 60 Hz electrostatic coupling from mains and motion artifact are also considered to determine minimum requirement of common mode rejection ratio (CMRR) and input impedance of IA. A dedicated ECG read-out front end incorporating chopping scheme is introduced to provide an input referred circuit noise of 1.3 ${\mu}V_{rms}$ over 0.5 Hz ~ 200 Hz, CMRR of IA > 100 dB, sensor resolution of 7 bits, and dissipating only 36 ${\mu}W$. Together with 8 bits synchronous successive approximation register (SAR) ADC, the sensor IC chip is implemented in 0.18 ${\mu}m$ CMOS technology and integrated on a 5 cm $\times$ 8 cm PCB with two copper patterned electrodes. With the help of proposed touch sensor, ECG signal containing QRS complex and P, T waves are successfully extracted by simply touching the electrodes with two thumbs.

비선형성의 개선을 위한 Capacitive pressure sensor의 Touch mode 방식에 대한 유한요소 해석 (Finite Element Analysis of Capacitive pressure sensor with Touch mode for improving non-linearity)

  • 김도형;오재근;최범규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.2087-2089
    • /
    • 2004
  • Capacitive pressure sensor는 Piezo type sensor에 비해 온도의 영향이 적어 공업계측, 전기용품 등 그 용도가 다양하여 폭넓게 사용되어지고 있지만, 측정값의 비선형성이 존재하여 측정값에 대한 신뢰도가 떨어지는 단점이 있다. 본 연구에서는 기존 capacitive pressure sensor의 비선형적 output을 개선하기 위한 방법으로 touch mode capacitive pressure sensor를 제안하였다. 또한, 실제 Device제작에 앞서 FEM 해석을 수행하였다. 2mm X 2mm 크기의 diaphragm, $25{\mu}m$의 두께, $20{\mu}m$의 gap을 갖는 Sensor를 Simulation하였으며 설계 변수를 추출하여 각각의 설계변수에 대한 해석을 실시하였다. 그 결과 15.2psi${\sim}$31psi의 영역에서 8.58pF${\sim}$54.31pF의 capacitance가 선형적으로 나타나는 sensor임을 확인하였다.

  • PDF