DOI QR코드

DOI QR Code

Capacitive Touch Sensor Pixel Circuit with Single a-InGaZnO Thin Film Transistor

단일 a-InGaZnO 박막 트랜지스터를 이용한 정전용량 터치 화소 센서 회로

  • Kang, In Hye (School of Electronics & Display Engineering, Hoseo Unversity) ;
  • Hwang, Sang Ho (School of Electronics & Display Engineering, Hoseo Unversity) ;
  • Baek, Yeong Jo (School of Electronics & Display Engineering, Hoseo Unversity) ;
  • Moon, Seung Jae (School of Electronics & Display Engineering, Hoseo Unversity) ;
  • Bae, Byung Seong (School of Electronics & Display Engineering, Hoseo Unversity)
  • 강인혜 (호서대학교 전자디스플레이공학부) ;
  • 황상호 (호서대학교 전자디스플레이공학부) ;
  • 백영조 (호서대학교 전자디스플레이공학부) ;
  • 문승재 (호서대학교 전자디스플레이공학부) ;
  • 배병성 (호서대학교 전자디스플레이공학부)
  • Received : 2018.12.27
  • Accepted : 2019.03.29
  • Published : 2019.03.31

Abstract

The a-InGaZnO (a-IGZO) thin film transistor (TFT) has the advantages of larger mobility than that of amorphous silicon TFTs, acceptable reliability and uniformity over a large area, and low process cost. A capacitive-type touch sensor was studied with an a-IGZO TFT that can be used on the front side of a display due to its transparency. A capacitive sensor detects changes of capacitance between the surface of the finger and the sensor electrode. The capacitance varies according to the distance between the sensor plate and the touching or non-touching of the sensing electrode. A capacitive touch sensor using only one a-IGZO TFT was developed with the reduction of two bus lines, which made it easy to reduce the pixel pitch. The proposed sensor circuit maintained the amplification performance, which was investigated for various drive conditions.

Keywords

HSSHBT_2019_v28n2_133_f0001.png 이미지

Fig. 1. Capacitive-type touch sensor ; (a) Mutual capacitance type, (b) Self-capacitance type [10].

HSSHBT_2019_v28n2_133_f0002.png 이미지

Fig. 2. Cross section of top gate a-IGZO TFT pixel sensor.

HSSHBT_2019_v28n2_133_f0003.png 이미지

Fig. 3. Transfer characteristics of a-IGZO TFT.

HSSHBT_2019_v28n2_133_f0006.png 이미지

Fig. 7. The measurement result of the proposed circuit.

HSSHBT_2019_v28n2_133_f0007.png 이미지

Fig. 9. Output characteristics according to the voltages of a readreset line.

HSSHBT_2019_v28n2_133_f0008.png 이미지

Fig. 10. Output characteristics according to the voltages of scan line and readreset line.

HSSHBT_2019_v28n2_133_f0009.png 이미지

Fig. 11. Output characteristics according to the pulse widths of scan and readreset line.

HSSHBT_2019_v28n2_133_f0010.png 이미지

Fig. 4. (a) Reference circuit for the capacitive touch sensor, (b) Proposed circuit for the capacitive touch sensor.

HSSHBT_2019_v28n2_133_f0011.png 이미지

Fig. 5. Simulation results; (a) the reference circuit, (b) the proposed circuit.

HSSHBT_2019_v28n2_133_f0012.png 이미지

Fig. 6. (a) Mask design, (b) Microscope image.

HSSHBT_2019_v28n2_133_f0013.png 이미지

Fig. 8. Output characteristics according to the voltages of a scan line.

References

  1. Y. H. Tai, H. L. Chiu, and L. S. Chou, "Active matrix touch sensor detecting time-constant change implemented by dual-gate IGZO TFTs", Solid-State Electron., Vol. 72, pp. 67-72, 2012. https://doi.org/10.1016/j.sse.2012.01.006
  2. D. Geng, Y. F. Chen, and M. Mativenga, "Touch sensor array with integrated drivers and comparator using a-IGZO TFTs", IEEE Electron Device Lett., Vol. 38, No. 3, pp. 391-394, 2017. https://doi.org/10.1109/LED.2017.2661405
  3. Y. Chen, D. Geng, and J. Jang, "32-2: High-speed capacitive touch sensor with pseudo-CMOS buffer using a-IGZO TFTs on plastic", SID Symp. Dig. Tech. Pap., Vol. 47, No. 1, pp. 408-411, 2016.
  4. Y. Chen, D. Geng, and J. Jang, "63-3: Capacitive touch sensor using a-IGZO TFTs for flexible AMOLED", SID Symp. Dig. Tech. Pap., Vol. 48, No. 1, pp. 934-937, 2017.
  5. Y. Chen, D. Geng, and J. Jang, "Integrated active-matrix capacitive sensor using a-IGZO TFTs for AMOLED", IEEE J. Electron Devices Soc., Vol. 6, pp. 214-218, 2018. https://doi.org/10.1109/JEDS.2018.2790954
  6. T. Osada, K. Akimoto, T. Sato, M. Ikeda, M. Tsubuku, J. Sakata, J. Koyama, T. Serikawa, and S. Yamazaki, "Development of liquid crystal display panel integrated with drivers using amorphous In-Ga-Zn-Oxide thin film transistors", Jpn. J. Appl. Phys., Vol. 49, No. 3, pp. 03CC02(1)-03CC02(4), 2010.
  7. Y. J. Tak, S. P. Park, T. S. Jung, H. Lee, W. G. Kim, J. W. Park, and H. J. Kim, "Reduction of activation temperature at $150^{\circ}C$ for IGZO films with improved electrical performance via UV-thermal treatment", J. Inf. Disp., Vol. 17, No. 2, pp. 73-78, 2016. https://doi.org/10.1080/15980316.2016.1172524
  8. P. Coni, J. N. Perbet, Y. Sontag, and J. C. Abadie, "31.2: Eliminating ghost touches on a self-capacitive touch-screen", SID Symp. Dig. Tech. Pap., Vol. 43, No. 1, pp. 441-414, 2012.
  9. C. Luo, "A low power self-capacitive touch sensing analog front end with sparse multi-touch detection", 2014 IEEE Int. Conf. on Acoust. Speech Signal Process. (ICASSP), pp. 3007-3011, Florence, Italy, 2014.
  10. Imagis technology, "A calibration method for increasing the touch of a capacitive touch sensor sensitivity of the self capacitance", KR Patent 101620830B1, 10 Nov., 2015.
  11. Y. Chen, D. Geng, and J. Jang, "High-speed pseudo-CMOS circuits using bulk accumulation a-IGZO TFTs", IEEE Electron Device Lett., Vol. 36, No. 2, pp. 153-155, 2015. https://doi.org/10.1109/LED.2014.2379700