• Title/Summary/Keyword: Total water requirement

Search Result 96, Processing Time 0.025 seconds

Calculation of Total Maximum Daily Load using Instreamflow Requirement (하천유지유량을 이용한 일최대 오염허용부하량 산정 방안)

  • Chung, Eun-Sung;Kim, Kyung-Tae;Kim, Sang-Ug;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.317-327
    • /
    • 2008
  • This study developed the methodology to calculate the total daily maximum load (TMDL) using the instreamflow requirement because the previous TMDLs were too simple to easily achieve. Instreamflow requirement which was the average low flow ($Q_{275}$) in the previous planning cannot consider the seasonal variation of streamflow. Therefore, this study used the instreamflow requirement which is a maximum value among hydrologic drought flow ($Q_{355}$), and environmental flows for ecology and scenery. The environmental flows for ecology were calculated using Physical HABitat SIMulation system (PHABSIM) which can estimate the necessary flow for fish survival by life cycle. Using the proposed method, all monthly TMDLs of streams in the Anyangcheon were calculated for the application.

Water Requirement of Red Pepper in Different Growth Stages (노지재배 고추의 생육시기별 물 요구량 구명)

  • Eom, Ki-Cheol;Jung, Pil-Kyun;Choi, Sung-Ho;Kim, Tae-Wan;Yoo, Sung-Yung;Park, So-Hyun;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.844-847
    • /
    • 2010
  • Water is the most important factor in crop cultivation. Water requirement of red pepper can be calculated based on the lysimeter experiments carried out by the RDA for 11 years about potential evapotranspiration, crop coefficient with climate data. The mean water requirement and total water requirement of red pepper in different growth stages are evaluated for two kinds of cultivation method.

Water Requirement of Twist Peppers in Greenhouse (온실 재배 꽈리고추의 필요수량)

  • 윤용철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.59-66
    • /
    • 2000
  • This study was carried out to investigated the water requirement of twisted sweet peppers which are cultivated in a green house. The meteorological conditions during the experiment period was close to that of normal year except the temperature and relative humidity. The growth status was improved with the increased saturation ratio. The range of the variation of daily water requirement were very large. The peak consumption occurred in the early August. And the higher saturation ratio resulted in higher water requirement. The total water requirement were about 57.180g/d/plant for pot with 100% (P100) of saturation , about 38.700g/d/plant for pot with 80%(P80) of saturation , about 23,720g/d/plant for pot with 60%(P60) of saturation, and about 53, 390g/d/plant for field cultivation in the green house, respectively. The water requirement was correlated with average ambient temperature and growing status, while no significant correlation were found between water requirement and minimum relative humidity or intensity of solar radiation. And the higher correlation was shown as the saturation ratio was increased. The transpiration coefficients of twisted sweet pepper were 378.0g/g for field cultivation in the green house, 363.3g/g for P100, 338.7g for P80 which was the smallest among pot cultivation , and 472.1g/g for P60 , respectively.

  • PDF

Water Requirement of Green Peppers in Greenhouse (온실재배 풋고추의 소비수량(농업시설))

  • 이근후;이종창;윤용철;서원명
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.327-332
    • /
    • 2000
  • This study was carried out to investigate the water requirement of green peppers which are cultivated in a greenhouse under the different soil water conditions. The meteorological conditions during the experiment period was not predominantly different from the conditions in a normal year. The highest leaf area per plant, plant height, and yield were 6,143$\textrm{cm}^2$/plant, 107cm, and 751g/plant, respectively. And daily variation of water requirements of green peppers ranged from 30 to 1,250g/d/plant which was fluctuated with significant difference. Total water requirements per plant which cultivated under the soil water conditions with different saturation ratios were 23,619g for P100, 43,044 for P80, and 2915g for P60, respectively. There were close correlation between plant height and water requirements. Low correlations were found between greenhouse ambient temperature and water requirement, while significant linear regression was shown between both of humidity and solar radiation and water requirement.

  • PDF

Experimental Study on the Harrow Water Reguirement and the Factors Influenced on It in the Paddy Field (써레질 용수량과 지배요인에 관한 시험연구)

  • 권영현;윤정목;김철기;한찬택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.90-95
    • /
    • 1989
  • The purpose of this study is to seek out the harrow water requirement applicable for the irrigation plan of paddy field and to find out the factors influenced on a variation in the requirement. The plots of experiment were arranged with randomized block design which was compo- sed of three kinds of soil texture (sandy loam, loam and silty loam) and ploughing depth (12cm, 17cm, and 22cm). The results obtained from this experimental study are summarized as follows. 1. Harrow water reguirement is not only changed by soil texture, but influenced by soil water content just before irrigating 2. Magnitude of total harrow water reguirement appli(able for the irrigation plan, when surface water depth and the water content just before irrigating is fixed on the basis of 30 mm and a shrinkage limit respectively, generally becomes to be 177.5mm, 116.3mm and 113. 8mm in the sandy loam, loam amd silty loam block, respectively. 3. The more a percolation of soil layer occurs, the more the harrow water requirement increases, but it is not much influenced by the increase in ploughing depth. 4. The larger a porosity of soil layer is, the more a net harrow requirement increases 5. The factors that influence on a variation in the harrow water requirement are appea- red to be percolation of soil layer, soil water content just before irrigating, porosity of soil layer, ploughing depth and designed surface water depth etc.

  • PDF

Water Requirement of Potato According to Growth Stage (노지재배 감자의 생육시기별 물 요구량 구명)

  • Eom, Ki-Cheol;Park, So-Hyun;Yoo, Sung-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.861-866
    • /
    • 2012
  • Water is the most important resource for the potato cultivation, especially to get the maximum water use efficiency and yield of potato, Water has to be applied moderately based on the water requirement of the potato. Crop water requirement (WR) is a function of the Potential evapo-transpiration(PET) and Crop coefficient (Kc). PET can be estimated by the climate data measured at the weather station in the production region. Kc was measured by the NIAST (RDA) through Lysimeter experiments. In this study, the growth stage of potato was divided as four (G-1 : Apr. 1~Apr. 15, G-2 : Apr. 16~May. 10, G-3 : May. 11~May. 31, G4 : Jun. 1~Jun. 15). The average PET during potato growing season of the 45 areas was $2.95mm\;day^{-1}$. The most water requirement was the G-3 stage among the potato growth stage. The MWR (Mean water requirement) according to growth stage was 1.0~1.2 (average 1.1), 1.5~1.8 (average 1.6), 1.9~2.2 (average 2.0) and 1.7~2.1 (average 1.8) mm $day^{-1}$, in the G-1, G-2, G-3 and G-4 stage, respectively. The TWR (Total water requirement) according to growth stage was 18.0~22.1 (average 19.3), 50.6~66.6 (average 56.3), 63.5~88.2 (average 72.4) and 38.3~54.5 (average 44) mm, in the G-1, G-2, G-3 and G-4 stage, respectively.

Water Requirement of Maize According to Growth Stage (노지재배 옥수수의 생육시기별 물 요구량 구명)

  • Eom, Ki-Cheol;Park, So-Hyun;Yoo, Sung-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.16-22
    • /
    • 2013
  • Water is the most important resource for the maximum water use efficiency and yield of maize. Water has to be applied moderately based on the water requirement of maize. Crop water requirement (WR) is a function of the potential evapo-transpiration (PET) and crop coefficient (Kc). PET can be estimated by the climate data measured at the weather station in the production region. Kc was measured by the NIAST (RDA) through lysimeter experiments. In this study, the growth stage of maize was divided into five ones (G-1: Apr. 25 ~ May 20, G-2: May 21 ~ Jun. 20, G-3: Jun. 21 ~ Jul. 20, G4: Jul. 11 ~ Jul. 25, G5: Jul. 26 ~ Aug. 20). The average PET during maize growing season of the 45 areas was 2.85 mm $day^{-1}$. The highest water requirement was at the G-3 stage among the maize growth stages. The mean water requirement (MWR) according to growth stage was 1.74 ~ 2.42 (average 2.02), 2.99 ~ 4.21 (average 3.41), 3.82 ~ 5.25 (average 4.41), 3.05 ~ 4.31 (average 3.48), and 2.62 ~ 3.49 (average 3.01) mm $day^{-1}$ in the G-1, G-2, G-3, G-4 and G-5 stage, respectively. The total water requirement (TWR) according to growth stage was 45.37 ~ 63.04 (average 52.56), 92.54 ~ 130.59 (average 105.77), 76.46 ~ 105.09 (average 88.14), 45.73 ~ 64.67 (average 52.20), and 68.25 ~ 90.75 (average 78.33) mm in the G-1, G-2, G-3, G-4 and G-5 stage, respectively.

A Study on the Water Resources Assessment for Irrigation Scheme in Malawi

  • AHN, SungSick;Kim, Jin-Hong
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.178-186
    • /
    • 2018
  • Generally, in terms of the development of irrigation scheme, the efficient water resource management that supplies the irrigation water in consideration of the required time and accurate quantity to grow the crop should be conducted. The water resource assessment should precede to supply the irrigation water efficiently. The water resources assessment is divided into the water requirement analysis and the water availability assessment. In case of Korea, the major crop is paddy rice unlike crops of Africa, such as sugarcane, maize, and cassava, etc. Because it is not familiar with the method for upland irrigation development in tropical area, it needs to know the water resources assessment for irrigation scheme development about these crops. The Natama Scheme in Chiradzulu District of the Southern Malawi was selected as study area, which has tropical climate. From the collected meteorological data, the evapotranspiration was analyzed by Penman-Monteith Method and the effective rainfall was analyzed by USDA Soil Conservation Service Method. This study displays the results that for study area, the evapotranspiration varies from 2.80 mm/day to 5.51 mm/day and the effective rainfall varied from 2.1mm to 149.0mm. According to the selected crop (Green Maize, Dry Maize), the unit water requirement (UWR) and water demand (WD) considering the irrigation efficiency, irrigation time and irrigation area were estimated to be $0.00122m^3/s/ha$ and $0.0122m^3/s$ respectively. For the water availability assessment, the runoff of Natama scheme was calculated by specific yield method. The water availability was evaluated through reviewed differences of discharge between $Q80_{intake}$ and Total WD, and the irrigation water can be supplied sufficiently in the existing 10ha of Natama scheme. As a result of reviewing the extensibility of irrigable area, total WD of scheme is $0.02313m^3/s$, and $Q80_{intake}$ is $0.02387m^3/s$ ($Q80_{intake}$ > Total WD). Therefore, Natama scheme can be extended from 10 ha to 17 ha in the dry season in consideration of the $Q80_{intake}$.

Effect of Rice Cultural Practices on Water Percolation, Irrigation Requirement, and Nitrogen Leaching under Lysimeter Condition

  • Kim, Dea-wook;Chae, Je-Cheon;Kim, Sung-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.6-11
    • /
    • 2001
  • In this lysimeter experiment, temporal changes of water percolation rate, irrigation requirement and ${No}_3$--N leaching were investigated under different cultural practices that were no-till direct seeding on flooded paddy (NTDSF), till direct seeding on flooded paddy (TDSF), and transplanting. The highest water percolation rate of 3,001 l/$m^2$ was measured in NTDSF. Others were 2,551 l/$m^2$ and 2,210 l/$m^2$ in TDSF and transplanting. Water percolation rate in NTDSF and TDSF was increased by 36% and 15% compared to transplanting. Water percolation rates in all cultural practices were increased remarkably from the reproductive growth stage and relatively large amount of water loss through percolation was measured even after the reproductive growth stage. A total irrigation requirement was 3,469 l/$m^2$ in NTDSF and 2,898 l/$m^2$ in TDSF. That was equivalent to 45% and 21 % of increase compared to 2,389 l/$m^2$ in transplanting. The largest ${No}_3$--N leaching through the entire rice growing period was 701 mg/$m^2$ in NTDSF and was followed by 494 mg/$m^2$ in TDSF and 465 mg/$m^2$ in transplanting. The ratios to the total amount of ${No}_3$--N leaching at the vegetative growth stage, reproductive growth stage and ripening stage were 31 %, 41 % and 28% in NTDSF; 21 %, 48% and 31 % in TDSF; and 18%, 48% and 35 % in transplanting.

  • PDF

The Optimum Irrigation Level and the Project Water Requirement for Upland Crops (밭 작물의 최적관개수준과 계획용수량 산정)

  • 윤학기;정상옥;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.72-86
    • /
    • 1990
  • This study was carried out to get the basic information of irrigation plans for upland crops such as the optimum irrigation level and the project water requirement. Red peppers and cucumbers were cultivated in PVC pot lysimeters filled with 60cm deep clay loam soil. Four tensiometers were installed in each pot to measure the soil water pressure head. Six levels of irrigation were used. The results obtained from this study are summarized as follows: 1.The optimum irrigation level. The irrigation level of FC-PF2.7 was found to be the optimum level for both red pepper and cucumber with respect to the yield and the weight per fruit. In case of FC-PF2.7, total ET during the irrigation period were 1005.2mm for red pepper, and 429.6mm for cucumber, respectively. 2.soil moisture extraction patterns. Average soil moisture extraction patterns (SMEP)during the irrigation period were from 1st soil layer 43% : 32% : 16% : 9% for red pepper and 39% : 34% : 15% : 12% for cucumber, respectively. The extraction ratio of the upper soils showed very large values during the early stage of growth and decreased largely during the middle stage, and became larger in the last stage. 3.The project water requirement. Among the reference crop evapotranspiration(ETo) computation methods presented by FAO, the Penman method was found to be the best. The effective rainfall was computed by a modified USDA-SCS curve number equation. Availability ratios of the total rainfall during irrigation season were 59.2% for red pepper and 48.9% for cucumber, respectively. Net project water requirement of design year are 837.3mm for red pepper. and 502.Smm for cucumber, respectively.

  • PDF