• 제목/요약/키워드: Total temperature measurement

검색결과 264건 처리시간 0.023초

미용 전, 후에 반려견의 체온변화를 통한 미용의 당위성 (Justification of Beauty through Changes in Body Temperature of Dogs Before and After Beauty Treatment)

  • 최한결
    • 한국환경과학회지
    • /
    • 제32권2호
    • /
    • pp.145-148
    • /
    • 2023
  • The purpose of this study was to investigate the changes in body temperature of canine via their hair lengths before and after grooming. A total of 120 companion canines were used in this study for a total of 6 weeks, and 20 dogs each week consisted of both 10 poodles and 10 malteses (five females and males). For accurate temperature measurement, the anal depth was measured at approximately 1.5 cm. Temperature before and after grooming was measured at 10 am and after more than three hours, respectively. There was statistical significance (p<0.05) in body temperature changes for male poodles at 1, 2, and 3 weeks and for female poodles at 1, 3, 4, and 5 weeks, and the total period showed a statistical difference for both male and female poodles (p<0.05). In addition, male and female malteses had an effect (p<0.05) on changes in body temperature at 1 and 6 weeks and only at 4 weeks, respectively. For total period, there was a statistical difference in male and female poodles (p<0.05). Moreover, when the temperature changes of females were compared, there was no remarkable difference. In conclusion, the body temperatures of both male and female dogs according to the length of their hair were lower after grooming than before grooming. The measurement of body temperature three hours after grooming, which could reduce stress or other factors, is judged to be able to help customers who are worried about clipping.

이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석 (Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding)

  • 유형민
    • Design & Manufacturing
    • /
    • 제17권1호
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

드론을 이용한 안면도 상공 대기경계층내의 미세먼지 연직분포 및 Flux 측정 (Vertical Aerosol Distribution and Flux Measurement in the Planetary Boundary Layer Using Drone)

  • 김희상;박용희;김우영;은희람;안강호
    • 한국입자에어로졸학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2018
  • Vertical particle size distribution, total particle concentration, wind velocity, temperature and humidity measurement was performed with a drone. The drone was equipped with a wind sensor, house-made optical particle count(Hy-OPC), condensation particle counter(Hy-CPC), GPS, Temperature, Relative Humidity, Pressure and communication system. Base on the wind velocity and the particle size vertical distribution measurement with drone, the particle mass flux was calculated. The vertical particle distribution showed that the particle number concentration was very strongly correlated with the relative humidity.

압축기 공력성능 측정 기법에 관한 연구 (Measurement Method of Aerodynamic Performance of A Turbo Compressor)

  • 박태춘;강영석;양수석;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2621-2624
    • /
    • 2008
  • The study on the measurement method of the aerodynamic performance of a turbo compressor was conducted. It is well known that the performance and the efficiency of the compressor can be calculated from the temperature and pressure distribution in each stage of the compressor. In the past Pitot tubes and thermocouples were used to measure pressure and temperature respectively, and recently pressure and temperature rake is used in order to decrease the measuring time and the number of measurement. The miniature total pressure rake which is available in the compressor with a small axial gap is designed and is under development.

  • PDF

수생태계 부영양화 분석을 위한 비색법 기반의 광학식 센서 신호처리회로(ROIC)구현 (Read-Out Integrated Circuit of Colorimetry-Based Optical Sensor for Eutrophication Analysis)

  • 구성모;정동건;최영찬;김경규;공성호
    • 센서학회지
    • /
    • 제29권4호
    • /
    • pp.270-274
    • /
    • 2020
  • In this study, a read-out integrated circuit (ROIC) that can be applied to a colorimetry-based optical sensor for analyzing total phosphorus and total nitrogen was developed and characterized. The proposed ROIC minimizes the effect on temperature fluctuation, improves sensitivity, and extends the dynamic range by utilizing a dual optical path and feedback control circuit. Using a dual optical path makes it possible to calibrate the output signal of the optical sensor automatically, along with the temperature fluctuation. The calibrated voltage is fed back into the measurement stage; thus, the output current of the measurement is adaptively controlled. As a result, the sensitivity and dynamic range of the proposed ROIC are improved. Finally, a total-phosphorus analysis was conducted by utilizing the ROIC. The ROIC was found to operate stably over a wide temperature range.

다점 피토관을 이용한 기체 유량 측정의 불확도 평가 (Uncertainty Assessment of Gas Flow Measurement Using Multi-Point Pitot Tubes)

  • 양인영;이보화
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.5-10
    • /
    • 2016
  • Gas flow measurement in a closed duct was performed using multi-point Pitot tubes. Measurement uncertainty was assessed for this measurement method. The method was applied for the measurement of air flow into a gas turbine engine in an altitude engine test facility. 46 Pitot tubes, 15 total temperature Kiel probes and 9 static pressure tabs were installed in the engine inlet duct of inner diameter of 264 mm. Five tests were done in an airflow range of 2~10 kg/s. The flow was compressible and the Reynolds numbers were between 450,000 and 2,220,000. The measurement uncertainty was the highest as 6.1% for the lowest flow rate, and lowest as 0.8% for the highest flow rate. This is because the difference between the total and static pressures, which is also related to the flow velocity, becomes almost zero for low flow rate cases. It was found that this measurement method can be used only when the flow velocity is relatively high, e.g., 50 m/s. Static pressure was the most influencing parameter on the flow rate measurement uncertainty. Temperature measurement uncertainty was not very important. Measurement of boundary layer was found to be important for this type of flow rate measurement method. But measurement of flow non-uniformity was not very important provided that the non-uniformity has random behavior in the duct.

고전압 펄스신호 측정용 분압기의 온도보상에 관한 실험 (Experimental Analysis on Temperature Compensation of Capacitive Voltage Divider for a Pulsed High Voltage Measurement)

  • 장성덕;손윤규;권세진;오종석;조무현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1530-1533
    • /
    • 2005
  • Total 12 units of high power klystron-modulator systems as microwave source is under operation for 2.5-GeV electron linear accelerator in Pohang Light Source(PLS) linac. RF power and beam power of klystron are precisely measured for the effective control of electron beam. A precise measurement and measurement equipment with good response characteristics are required for this. Input power of klystron is calculated from the applied voltage and the current on its cathode. Tiny measurement error severely effects RF output power value of klystron. Therefore, special care is needed to measure precise beam voltage. Capacitive voltage divider(CVD) unit is intended for the measurement of beam voltage of 400 kV generated from the pulsed klystron-modulator system. Main parameter to determine the standard capacitance in the high arm of CVD is dielectric constant of insulation oil. Therefore CVD should be designed to have a minimum capacitance variation due to voltage, frequency and temperature in the measurement range. This paper will discuss the analysis of capacitive voltage divider for a pulsed high-voltage measurement, and the empirical relations between capacitance and oil temperature variation.

  • PDF

Winding Temperature Measurement in a 154 kV Transformer Filled with Natural Ester Fluid

  • Kweon, Dongjin;Koo, Kyosun
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.156-162
    • /
    • 2013
  • This paper measures the hot spot temperatures in a single-phase, 154 kV, 15/20 MVA power transformer filled with natural ester fluid using optical fiber sensors and compares them with those calculated by conventional heat run tests. A total of 14 optical fiber sensors were installed on the high-voltage and low-voltage windings to measure the hot spot temperatures. In addition, three thermocouples were installed in the transformer to measure the temperature distribution during the heat run tests. In the low-voltage winding, the hot spot temperature was $108.4^{\circ}C$, calculated by the conventional heat run test. However, the hot spot temperature measured using the optical fiber sensor was $129.4^{\circ}C$ between turns 2 and 3 on the upper side of the low-voltage winding. Therefore, the hot spot temperature of the low-voltage winding measured using the optical fiber sensor was $21.0^{\circ}C$ higher than that calculated by the conventional heat run test.

초분광 광학가시화 기술을 활용한 인공지능 산소온도 측정기술 개발 (Development of AI oxygen temperature measurement technology using hyperspectral optical visualization technology)

  • 이정훈;김보라;이승훈;김준식;윤민;조경래
    • 한국가시화정보학회지
    • /
    • 제21권1호
    • /
    • pp.103-109
    • /
    • 2023
  • This research developed a measurement technique that can measure the oxygen temperature inside a high temperature furnace. Instead of measuring only changes in frequency components within a small range used in the existing variable laser absorption spectroscopy, laser spectroscopy technology was used to spread out wavelength of the light source passing through the gas Based on a total of 20,000 image data, research was conducted to predict the temperature of a high-temperature furnace using CNN with black and white images in the form of spectral bands by temperature of 25 to 800 degrees. The optimal model was found through Hyper parameter optimization, R2 score is 0.89, and the accuracy of the test data is 88.73%. Based on this research, it is expected that concentration measurement and air-fuel ratio control technology can be applied.

고속 자유/벽 제트 영역에서의 총온도 특성 고찰 (Total temperature investigation in free & wall jet regions)

  • 정현갑;이장우;유만선;조형희;황기영;배주찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.329-333
    • /
    • 2005
  • 고속의 자유 제트 및 표면 충돌시 나타나는 벽제트 내에서의 총온도 분포가 측정되어졌다. 자유제트에서는 노즐 출구로부터 측정거리를 달리하며(Z/D=1,2,4,6) 외기를 포함하여 총온도 분포가 측정되었으며, 제트와 외기간 전단층에서의 에너지 분리현상을 확인하였다. 벽제트 영역에서는 충돌거리가 짧은 경우에 대하여 반경위치를 달리하며(R/D=1.25, 1.5, 1.75, 2.0) 총온도 분포를 측정하여 벽제트 경계 및 벽근방에서의 에너지 분리현상을 확인하였으며, 단열벽면온도 분포와 이를 비교$\cdot$검토하여 설명하였다.

  • PDF